The symbiotic rumen microbiome and cattle performance: a brief review

2013 ◽  
Vol 53 (9) ◽  
pp. 876 ◽  
Author(s):  
C. Bath ◽  
M. Morrison ◽  
E. M. Ross ◽  
B. J. Hayes ◽  
B. G. Cocks

The rumen of the dairy cow contains a rich and diverse collection of microbes that during feed digestion produce significant quantities of methane gas and ammonia, both of which contribute to greenhouse gas emissions. Strategies to redirect rumen carbon and nitrogen metabolism away from these products provide opportunities for significant productivity improvements in livestock systems not only by improving nutrient retention, but also by reducing greenhouse gas emissions. In order to develop these strategies, a greater knowledge of the diversity of the microbes within their rumen and their genomic capability is required. Many have used several techniques to study the rumen microbes, and the technology continues to improve. Among them include researchers at the Department of Primary Industries Victoria (DPI Vic) and the Dairy Futures Cooperative Research Centre (CRC) who are addressing the issue of regulation of methane emissions in dairy cattle, while scientists in Queensland and New South Wales, as part of the most recent Beef CRC program, focus on beef cattle. In this brief review, we examine how the techniques used in rumen microbial ecology have changed, and how technology improvements continue to allow us to examine the rumen microbiota of cattle and other ruminants, so as to better understand and possibly select animals with superior traits, leading to improvements in feed efficiency, methane emissions and nitrogen retention.

2002 ◽  
Vol 42 (1) ◽  
pp. 25 ◽  
Author(s):  
J. Bradshaw ◽  
B.E. Bradshaw ◽  
G. Allinson ◽  
A.J. Rigg ◽  
V. Nguyen ◽  
...  

Many industries and researchers have been examining ways of substantially reducing greenhouse gas emissions. No single method is likely to be a panacea, although some options do show considerable promise. Geological sequestration is one option that utilises mature technology and has the potential to sequester large volumes of CO2. This technology may have particular relevance to some of Australia’s major gas resources that are relatively high in CO2. In Australia, geological sequestration has been the subject of research within the Australian Petroleum Cooperative Research Centre’s GEODISC program. A portfolio of potential geological sequestration sites (sinks) has been identified across all sedimentary basins in Australia, and these have been compared with nearby known or potential CO2 emission sources, including natural gas resources. These sources have been identified by incorporating detailed analysis of the national greenhouse gas emission databases with other publicly available data, a process that resulted in recognition of eight regional emission nodes. An earlier generic economic model for geological sequestration in Australia has been updated to accommodate the changes arising from this process of source to sink matching. Preliminary findings have established the relative attractiveness of potential injection sites through a ranking approach. It includes the ability to accommodate the volumes of sequesterable greenhouse gas emissions predicted for the adjacent region, the costs involved in transport, sequestration and ongoing operations, and a variety of technical geological risks. Some nodes with high volumes of emissions and low sequestration costs clearly appear to be suitable, whilst others with technical and economic issues appear to be problematic. This assessment may require further refinement once findings are completed from the GEODISC site-specific research currently underway.


2015 ◽  
Vol 5 (4) ◽  
pp. 437-445 ◽  
Author(s):  
C. Schaum ◽  
D. Lensch ◽  
P.-Y. Bolle ◽  
P. Cornel

Sewage sludge is an important resource for the generation of electricity and heat within a wastewater treatment plant (WWTP). Taking a holistic approach to such use involves considering the greenhouse gas emissions. In particular, for anaerobic sludge treatment, methane emissions are a matter of concern. Therefore, the utilization of a carbon balance, based on the chemical oxygen demand (COD), will be a focus for evaluating the magnitude of methane losses within the sludge treatment. In addition to biogas production and use in combined heat and power plants (CHPs), dissolved methane in digested sludge, as well as the methane slip, have to be considered. Measurements of dissolved methane concentrations in sewage sludge from digesters of various WWTPs show a concentration of about 17–37 mg CH4/L. The COD balance indicates a ratio of the methane emissions (methane slip, dissolved methane and residual gas) of < 4% of the total methane production during digestion. Considering the electricity generation by CHPs and the higher global warming potential of methane, compared to carbon dioxide, emissions of approximately 300 g CO2-equ./kWhel result, which is in a similar range to greenhouse gas emissions caused by electricity generation by fossil fuels.


2021 ◽  
Vol 2021 (1) ◽  
pp. 4-13
Author(s):  
I.Ch. Leshchenko ◽  

The purpose of this paper is to explore the influence of the new Ukrainian and European regulatory framework for 2019-2020 concerning the decarburization of economy of the functioning of Ukrainian gas industry. The paper provides an overview of the Ukrainian regulatory framework of 2019–2020 on the implementation of the system of monitoring, reporting, and verification of greenhouse gas emissions in our country. We also provide an overview of new European documents on the decarbonisation of economy, in particular, the European Green Deal, the EU Strategy for Reducing Methane Emissions, and the Hydrogen Strategy for Climate-Neutral Europe. We showed that these EU documents will exert a significant influence on the functioning of both the energy sector of our country as a whole and its part – gas industry. The paper shows that, under the existing plans of the development of energy sector in European countries in order to reach the state where there are no net emissions of greenhouse gases by 2050 and under conditions of fierce competition for sources and routes of gas supply to the European market, the most pressing problem confronting the gas transportation system of Ukraine is to optimize its structure with simultaneous replacement of outdated compressor equipment by modern one with lower carbon dioxide emissions, which will require a significant amount of investment. Under such conditions, it is necessary to study carefully the feasibility of introducing activities for the main transportation of gas under the action of Greenhouse Gas Trading System. We also showed that the reduction of methane emissions along the natural gas chain supply in accordance with the EU Strategy for the reduction of methane emissions is extremely important for Ukraine. In addition to the implementation of measures for reducing these emissions, it is necessary to attract attention to the development of national methods for estimating methane emissions and the use of national coefficients in the formation of the National Greenhouse gas emissions inventory for estimating volatile emissions from natural gas activities. Keywords: monitoring, reporting and verification of greenhouse gas emissions, Greenhouse Gas Trading System, decarbonisation, European Green Deal, gas transportation system


2018 ◽  
Vol 64 (1) ◽  
pp. 197-207 ◽  
Author(s):  
Ernandes S. Oliveira Junior ◽  
Ralph J. M. Temmink ◽  
Beatriz F. Buhler ◽  
Renata M. Souza ◽  
Nathália Resende ◽  
...  

CATENA ◽  
2021 ◽  
Vol 198 ◽  
pp. 105046
Author(s):  
Carlos M. Romero ◽  
Xiying Hao ◽  
Chunli Li ◽  
Jen Owens ◽  
Timothy Schwinghamer ◽  
...  

2021 ◽  
Vol 21 (17) ◽  
pp. 13131-13147
Author(s):  
Taylor S. Jones ◽  
Jonathan E. Franklin ◽  
Jia Chen ◽  
Florian Dietrich ◽  
Kristian D. Hajny ◽  
...  

Abstract. Cities represent a large and concentrated portion of global greenhouse gas emissions, including methane. Quantifying methane emissions from urban areas is difficult, and inventories made using bottom-up accounting methods often differ greatly from top-down estimates generated from atmospheric observations. Emissions from leaks in natural gas infrastructure are difficult to predict and are therefore poorly constrained in bottom-up inventories. Natural gas infrastructure leaks and emissions from end uses can be spread throughout the city, and this diffuse source can represent a significant fraction of a city's total emissions. We investigated diffuse methane emissions of the city of Indianapolis, USA, during a field campaign in May 2016. A network of five portable solar-tracking Fourier transform infrared (FTIR) spectrometers was deployed throughout the city. These instruments measure the mole fraction of methane in a total column of air, giving them sensitivity to larger areas of the city than in situ sensors at the surface. We present an innovative inversion method to link these total column concentrations to surface fluxes. This method combines a Lagrangian transport model with a Bayesian inversion framework to estimate surface emissions and their uncertainties, together with determining the concentrations of methane in the air flowing into the city. Variations exceeding 10 ppb were observed in the inflowing air on a typical day, which is somewhat larger than the enhancements due to urban emissions (<5 ppb downwind of the city). We found diffuse methane emissions of 73(±22) mol s−1, which is about 50 % of the urban total and 68 % higher than estimated from bottom-up methods, although it is somewhat smaller than estimates from studies using tower and aircraft observations. The measurement and model techniques developed here address many of the challenges present when quantifying urban greenhouse gas emissions and will help in the design of future measurement schemes in other cities.


Sign in / Sign up

Export Citation Format

Share Document