scholarly journals Genetic analyses on bodyweight, reproductive, and carcass traits in composite beef cattle

2017 ◽  
Vol 57 (3) ◽  
pp. 415 ◽  
Author(s):  
Bruno Carlos Pires ◽  
Patrícia Tholon ◽  
Marcos Eli Buzanskas ◽  
Ana Paula Sbardella ◽  
Jaqueline Oliveira Rosa ◽  
...  

In beef cattle, growth, reproductive, and carcass traits have been studied for improving productivity and quality of meat products. The aim of this study was to estimate genetic parameters for birth (BW), weaning (WW) and yearling (YW) weights, scrotal circumferences at weaning (SCW) and yearling (SCY), age at first calving (AFC), ribeye area (REA) and back fat thickness (BFT) in order to provide support for the evaluation program of the composite Canchim breed. Data on 12 967 (BW), 7481 (WW), 5131 (YW), 1447 (SCW), 1224 (SCY), 1400 (AFC), and 2082 (REA and BFT) animals were analysed using the Average Information Restricted Maximum Likelihood method under an animal model (single and multi-trait analyses). A substantial proportion of the variation in the bodyweights, scrotal circumferences and carcass traits was associated with the additive genetic term indicating that these traits may respond to the selection process. For AFC, a low heritability estimate was observed. Genetic correlations among bodyweights varied from 0.41 to 0.93. The genetic correlation among scrotal circumferences was 0.91. Important genetic correlations among YW, SCW, and SCY with AFC were observed (–0.48, –0.61, and –0.71, respectively), indicating that indirect responses to selection for these traits would be expected in the age of which the heifers calve. Furthermore, BFT presented an interesting result with calving performance due to the genetic correlation (–0.69) with AFC. Post-weaning weights showed moderate genetic correlations with REA. Many of the traits considered in the genetic evaluation of this breed are genetically correlated in a favourable manner. Genetic improvement through selection is expected for production, reproduction, and carcass traits in Canchim beef cattle.

2009 ◽  
Vol 49 (6) ◽  
pp. 413 ◽  
Author(s):  
K. C. Prayaga ◽  
N. J. Corbet ◽  
D. J. Johnston ◽  
M. L. Wolcott ◽  
G. Fordyce ◽  
...  

Genetic analyses of tropical adaptive traits were conducted for two tropically adapted genotypes, Brahman (BRAH) and Tropical Composite (TCOMP). Traits included tick scores (TICK), faecal egg counts (EPG), buffalo fly-lesion scores (FLY), rectal temperatures under hot conditions (TEMP), coat scores (COAT), coat colour on a light to dark scale (COLOUR), navel scores (NAVEL) and temperament measured as flight time (FT). The data comprised adaptive measures recorded at specific times on 2071 heifers comprising 966 BRAH and 1105 TCOMP. The genetic correlations of these adaptive traits with heifer growth, scanned carcass, pubertal measures and steer growth and carcass traits were estimated. BRAH recorded significantly (P < 0.05) lower TICK, EPG, FLY and TEMP than did TCOMP. BRAH also had significantly sleeker coats, lighter coat colour, more pendulous navels and more docile temperament than did TCOMP. The heritability of TICK and FLY was low (<20%), that of EPG, TEMP, NAVEL and FT was moderate (20–50%) and that of COAT and COLOUR high (>50%). In general, phenotypic correlations between these adaptive traits were low and genetic correlations were non-significant, implying trait independence. Genetic correlations between EPG and weight traits (0.29 to 0.44) indicated a positive relationship, implying no deleterious effect of worms on the growth at a genetic level, especially in TCOMP. The negative genetic correlations between COAT and body-condition score across genotypes (–0.33 to –0.48) indicated genetic advantage of sleek coats in tropics. A positive genetic correlation between COAT and the age at the first-observed corpus luteum (0.73) in BRAH indicated that BRAH with sleeker coats were genetically early maturing. Further, sleeker coats were genetically indicative of lower weights and lower fat cover at puberty in BRAH. The scanned fat measures at rump and rib sites for feedlot steers showed strong genetic correlation (0.50–0.58) with heifer TEMP, indicating genetically fatter animals had genetically lower heat tolerance. In BRAH, a positive genetic association between heifer COLOUR and scanned fat measures in steers (0.50–0.54) implied increased fatness in genetically darker animals. Further, in BRAH, a strong negative genetic correlation (–0.97) was observed between steer retail beef yield and heifer TEMP, indicating a favourable genetic association. In general, genetic correlations between adaptive traits and other economic traits were genotype specific. Further, it can be concluded that selection for productive and pubertal traits in tropical beef cattle genotypes would not adversely affect their tropical adaptability.


2012 ◽  
Vol 52 (11) ◽  
pp. 975 ◽  
Author(s):  
D. G. F. Guidolin ◽  
M. E. Buzanskas ◽  
S. B. Ramos ◽  
G. C. Venturini ◽  
R. B. Lôbo ◽  
...  

Identification of genotype–environment interaction in beef cattle may help the artificial selection process and increase the efficiency of genetic evaluation on sires submitted to different environments. Post-weaning traits are economically important and are more influenced by the effects of genotype–environment interactions than pre-weaning traits. Thus, the aim of this study was to investigate whether this interaction has any effect on bodyweight at 365, 450, and 550 days of age in Nellore cattle reared in Brazil. Analyses considered the states of Goiás, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Pará, and São Paulo. Genetic parameters were estimated for each trait, per state, using the restricted maximum likelihood method, in two-trait analysis under an animal model. Genetic correlations regarding the same trait in two different states were used to evaluate the effect of the genotype–environment interaction on the traits studied. Genetic correlation estimates smaller than 0.80 between observations for the same trait in different states were taken to be indicative of genotype–environment interaction. It was observed that there is evidence of genotype–environment interaction in some of the states studied, and they tend to increase when the weight measurements are made at later ages. From this, it was concluded that selection conducted using data from one state might be different from selection based on data from another state. Summaries of bulls that consider different environments could contribute greatly to the genetic improvement of livestock.


2005 ◽  
Vol 85 (4) ◽  
pp. 463-473 ◽  
Author(s):  
R. Bergen ◽  
S. P. Miller ◽  
J. W. Wilton

Genetic correlations were examined among 10 live growth and ultrasound traits measured in yearling beef bulls (n = 2172) and four carcass traits measured in crossbred finished feedlot steers (n = 1031). Heritabilities ranged from 0.13 (bull ultrasound longissimus muscle width) to 0.83 (yearling bull hip height). Genetic correlations indicated that selecting yearling bulls for increased growth rate and hip height would lead to higher carcass weight, increased longissimus muscle area and reduced levels of carcass marbling in steers. Bull ultrasound fat depth was positively associated with both carcass fat depth and marbling score. Most ultrasound longissimus muscle size measurements in bulls were positively associated with each other and with carcass longissimus muscle area in steers, but the magnitude of the genetic correlation with carcass measurements depended on the bull longissimus muscle size trait in question. This suggests that longissimus muscle shape in bulls may be related to carcass weight, fat and muscle traits in steers. Results confirm that while ultrasound is a valuable tool for the genetic improvement of carcass traits in beef cattle, genetic correlations between live bull ultrasound and steer carcass traits less then unity suggest that selection would benefit from multiple trait evaluations in situations where reliable carcass data are available. Key words: Ultrasound, beef carcass, heritability, genetic correlation


1968 ◽  
Vol 48 (1) ◽  
pp. 1-6 ◽  
Author(s):  
G. L. Roy ◽  
W. J. Boylan ◽  
M. E. Seale

Data from a swine breed development project provided estimates of the genetic correlation among six performance and carcass traits. The data from the new breed, called Managra, were obtained over a 7-year period. Most genetic relationships examined were such that selection for improvement of one trait would yield a favorable improvement in another. Both carcass backfat and live backfat probe were found to be negatively correlated with area of loin eye and length of carcass. A positive genetic correlation was found between post-weaning daily gain and loin eye area. A high positive genetic correlation was found between birth weight and loin eye area. An unfavorable association involved a positive genetic correlation between birth weight and backfat.Correction factors for effect of carcass weight on the magnitude of carcass trait measurements and differences in means between sexes were obtained.Heritability of the traits was estimated by paternal half-sib correlation. The estimates for carcass traits were moderately high and agree well with most other estimates reported in the literature.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 47-47
Author(s):  
Roberto D Sainz ◽  
Nayanny Guimarães ◽  
Cláudio U Magnabosco ◽  
Fernando Lopes

Abstract Frame score (FS) systems for beef cattle generally represent the relationships among growth, body composition, reproduction and mature size, in a simple and practical form. This study aimed to: 1) develop a FS system for Nelore cattle that is biologically sound, easy to interpret, and useful for producers; and 2) estimate the genetic parameters of the FS with productive and reproductive traits. An arbitrary scale (1 to 12) was devised so that each unit corresponds to 15 kg of carcass weight (1 @), as this is a common measure used for marketing beef cattle in Brazil. Therefore, ideal carcass weight, defined as having 6 mm of backfat, would be 18 @ (269 kg) and 15 @ (224 kg) for FS = 6 males and females, respectively. Data from 36,030 animals (22,405 males, 13,565 females) raised on pasture were obtained from participating herds of the National Association of Breeders and Researchers (ANCP). Genetic parameters were estimated in uni- and bicharacteristic analyses under an animal model, using the EM-REML algorithm (AIREMLF90) and Bayesian inference (GIBBS1F90). The heritability estimate for the new FS was 0.38, and its additive genetic correlations were 0.70, 0.72, 0.77, 0.33, -0.57, 0.27, and 0.28 with BW at 365 d, BW at 450 d, hip height, longissimus muscle area, subcutaneous fat thickness, scrotal circumference at 450 d, and age at first calving, respectively. The estimated heritability and genetic correlations indicate that there is enough additive genetic variability to allow for genetic response to selection. The estimates support the notion that larger frame animals are taller, heavier, leaner and later maturing, both in body composition as well as sexually. The new frame score may be a useful tool for genetic selection of animals that are best suited to their environment.


2004 ◽  
Vol 84 (4) ◽  
pp. 599-609 ◽  
Author(s):  
J. A. Minick ◽  
M. E. Dikeman ◽  
E. J. Pollak ◽  
D. E. Wilson

Heritabilities and correlations of Warner-Bratzler shear force (WBSF), marbling score (MS), hot carcass weight (HCW),12–13th rib-fat (FAT), and ribeye area (REA) were calculated from 3360 Angus-, Charolais-, Hereford-, and Simmental-sired cattle in the C attleman’s Beef Board Carcass Merit Project. The heritabilities (± SE) for WBSF, MS, HCW, FAT, and REA were 0.34 ± 0.25, 0.43 ± 0.28, 0.73 ± 0.35, 0.16 ± 0.19, and 0.56 ± 0.31 in Angus; 0.43 ± 0.22, 0.30 ± 0.18, 0.21 ± 0.16, 0.35 ± 0.20, and 0.23 ± 0.16 in Charolais; 0.12 ± 0.11, 0.55 ± 0.22, 0.20 ± 0.14, 0.25 ± 0.15 and 0.34 ± 0.17 in Hereford; and 0.16 ± 0.14, 0.44 ± 0.20, 0.45 ± 0.20, 0.23 ± 0.16, and 0.30 ± 0.18 in Simmental. The genetic correlations, averaged across analysis type, for WBSF-MS, WBSF-HCW, WBSF-FAT, WBSF-REA, MS-HCW, MS-FAT, MS-REA, HCW-FAT, HCW-REA, and FAT-REA were -0.17, 0.32, -0.23, 0.30, 0.10, -0.17, 0.39, -0.15, 0.68, and -0.86 in Angus; -0.42, 0.77, 0.52, -0.05, -0.44, -0.22, -0.19, 0.66, -0.05, and -0.24 in Charolais; -0.43, -0.04, -0.33, 0.09, 0.08, 0.79, -0.14, -0.26, 0.50, and -0.38 in Hereford; and 0.55, 0.08, 0.62, -0.08, 0.30, 0.61, -0.14, 0.06, 0.65, and -0.48 in Simmental. Key words: Beef cattle, genetic parameters, carcass quality, tenderness


2018 ◽  
Vol 58 (7) ◽  
pp. 1201 ◽  
Author(s):  
Mário L. Santana Jr ◽  
Joanir P. Eler ◽  
Annaiza B. Bignardi ◽  
Arione A. Boligon ◽  
José B. S. Ferraz

In tropical production systems, beef cattle are raised in highly heterogeneous environments. Heterogeneity is, therefore, expected to exist in the (co)variance components for traits of economic interest in different production environments. The main objective of the present study was to estimate genetic correlations between growth traits and reproductive performance of beef females, depending on the environment. The present study was conducted in the tropical region of Brazil, applying a multiple-trait random regression animal model to field records of heifer pregnancy (HP), hip height, bodyweight at ~18 months of age (BW18) and postweaning weight gain (PWG) from 20 893 Nelore females. As evidence of genotype by environment interaction (G × E), heterogeneity of genetic variance across environments was observed mainly for HP, PWG and BW18. Moreover, the estimates of genetic correlation within these traits reached values lower than unity on the environmental gradient. The genetic correlation among growth traits tended to be stronger in favourable environments, a fact that should favour correlated responses under these conditions. In contrast, the genetic correlations between growth traits and HP tended to become weaker and even exhibited little evidence of antagonism in more favourable environments. On the basis of these findings, selection for higher growth in extreme favourable environments should result in little or no damage to HP as a correlated response. All these results lead us to believe that the G × E is an important factor to be considered in genetic evaluations of beef cattle raised in tropical environments.


2018 ◽  
Vol 58 (7) ◽  
pp. 1210 ◽  
Author(s):  
A. A. Boligon ◽  
P. P. Farias ◽  
V. M. Roso ◽  
M. L. Santana ◽  
A. B. Bignardi ◽  
...  

Genetic improvement in beef cattle involves evaluation for fertility, growth, carcass and visual scores traits. In general, genetic and economic parameters of these traits are considered for selection index construction. The present study was conducted to establish the magnitude of genetic and phenotypic correlations between visual scores of conformation, precocity and muscling at weaning and at yearling, birth to weaning weight gain, weaning to yearling weight gain and yearling scrotal circumference, and between these traits with selection indices applied in this population. In addition, the expected gains were obtained in such traits by taking under consideration the adopted selection criteria based on indices. Positive and high genetic correlations were estimated between weaning traits (visual scores and weight gain), ranging from 0.70 ± 0.02 to 0.97 ± 0.01. In genetic terms, the same visual scores, but evaluated in two ages (weaning and yearling) showed positive and high associations, with values of 0.90 ± 0.01 (conformation), 0.88 ± 0.01 (precocity) and 0.84 ± 0.02 (muscling). Genetic associations between yearling visual scores with scrotal circumference and weaning to yearling weight gain ranging from 0.36 ± 0.02 to 0.53 ± 0.01. Using the weaning index, are expected genetic gains ranging from 0.26% to 0.70%/year of the phenotypic mean of each weaning trait. Using the yearling index, annual genetic gains estimated for weaning traits (ranging from 0.25% to 0.63% of the phenotypic mean of the trait) were lower than that obtained at yearling (ranging from 0.27% to 0.98% of the phenotypic mean of the trait). Selection for one of traits obtained at weaning should result, by correlated response, in gain for the others. Also, the choice of animals with higher breeding values for weaning visual scores, beyond anticipate the selection process, should lead to favourable changes in these traits at yearling. Selection for better body composition at yearling (higher scores) should provide increase in scrotal circumference and weight gain. The use of higher values of the indices should result in positively correlated response, but in different magnitudes for each trait used in these indices. However, in both weaning and yearling, higher genetic gains to visual scores are expected in the same period, when the selection is based on the values of these indices.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1425
Author(s):  
Masoumeh Naserkheil ◽  
Deuk-Hwan Lee ◽  
Hong-Sik Kong ◽  
Jiyeon Seong ◽  
Hossein Mehrban

Genetic parameters have a significant role in designing a breeding program and are required to evaluate economically important traits. The objective of this study was to estimate heritability and genetic correlation between yearling ultrasound measurements, such as backfat thickness (UBFT), eye muscle area (UEMA), intramuscular fat content (UIMF), and carcass traits, such as backfat thickness (BFT), carcass weight (CW), eye muscle area (EMA), marbling score (MS) at approximately 24 months of age, as well as yearling weight (YW) in Hanwoo bulls (15,796) and steers (5682). The (co) variance components were estimated using a multi-trait animal model. Moderate to high heritability estimates were obtained and were 0.42, 0.50, 0.56, and 0.59 for CW, EMA, BFT, and MS, respectively. Heritability estimates for yearling measurements of YW, UEMA, UBFT, and UIMF were 0.31, 0.32, 0.30, and 0.19, respectively. Favorable and strong genetic correlations were observed between UIMF and MS (0.78), UBFT and BFT (0.63), and UEMA and EMA (0.65). Moreover, the estimated genetic correlation between YW and CW was high (0.84) and relatively moderate between YW and EMA (0.43). These results suggest that genetic improvement can be achieved for carcass traits when using yearling ultrasound measurements as selection criteria in ongoing Hanwoo breeding programs.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Harvey C Freetly ◽  
Larry A Kuehn ◽  
Richard M Thallman ◽  
Warren M Snelling

Abstract The cow herd consumes approximately 70% of the annual feed resources. To date, most genetic evaluations of feed intake in beef cattle have been made in growing animals and little information is available for mature cows. Genetic evaluations in mature cows have predominately been confined to lactating dairy cows and the relationship between feed intake as growing heifers and mature cows has not been addressed. It was the purpose of this study to estimate the heritability of feed intake when measured as growing heifers and mature cows and determine the genetic correlation between these measurements. Individual feed intake and BW gain were measured on 687 heifers and 622 5-yr-old cows. The heritability of average daily DMI (ADDMI) estimated in heifers was 0.84 ± 0.12 and 0.53 ± 0.12 in cows. The heritability of ADG estimated in heifers was 0.53 ± 0.12 and 0.34 ± 0.11 in cows. The genetic correlation between heifer and cow ADDMI was 0.84 ± 0.09. The genetic correlation between heifer and cow ADG was 0.73 ± 019. Heritability of residual feed intake in heifers was 0.25 ± 0.11 and 0.16 ± 0.10 in cows. Heritability for residual gain in heifers was 0.21 ± 0.11 and 0.14 ± 0.10 in cows. Feed intake and ADG are heritable and genetically correlated between heifers and cows. Selection for decreased feed intake and ADG in growing animals will probably have the same directional effects on mature cows.


Sign in / Sign up

Export Citation Format

Share Document