scholarly journals Heritability and genetic correlations of feed intake, body weight gain, residual gain, and residual feed intake of beef cattle as heifers and cows

2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Harvey C Freetly ◽  
Larry A Kuehn ◽  
Richard M Thallman ◽  
Warren M Snelling

Abstract The cow herd consumes approximately 70% of the annual feed resources. To date, most genetic evaluations of feed intake in beef cattle have been made in growing animals and little information is available for mature cows. Genetic evaluations in mature cows have predominately been confined to lactating dairy cows and the relationship between feed intake as growing heifers and mature cows has not been addressed. It was the purpose of this study to estimate the heritability of feed intake when measured as growing heifers and mature cows and determine the genetic correlation between these measurements. Individual feed intake and BW gain were measured on 687 heifers and 622 5-yr-old cows. The heritability of average daily DMI (ADDMI) estimated in heifers was 0.84 ± 0.12 and 0.53 ± 0.12 in cows. The heritability of ADG estimated in heifers was 0.53 ± 0.12 and 0.34 ± 0.11 in cows. The genetic correlation between heifer and cow ADDMI was 0.84 ± 0.09. The genetic correlation between heifer and cow ADG was 0.73 ± 019. Heritability of residual feed intake in heifers was 0.25 ± 0.11 and 0.16 ± 0.10 in cows. Heritability for residual gain in heifers was 0.21 ± 0.11 and 0.14 ± 0.10 in cows. Feed intake and ADG are heritable and genetically correlated between heifers and cows. Selection for decreased feed intake and ADG in growing animals will probably have the same directional effects on mature cows.

2016 ◽  
Vol 96 (3) ◽  
pp. 448-455 ◽  
Author(s):  
Y. Mu ◽  
G. Vander Voort ◽  
M.K. Abo-Ismail ◽  
R. Ventura ◽  
J. Jamrozik ◽  
...  

With selection in beef cattle now incorporating feed efficiency, knowing the relationship with other traits is needed. Genetic relationships were estimated with an animal model in ASReml with a three-generation pedigree inclusive of 2882 animals. Multibreed data from two Ontario beef research farms with fertility traits were available on 1366 females and postweaning traits, including feed efficiency on 1297 individuals. Estimates of heritability for fertility traits were low to moderate ranging from 0.03 ± 0.01 for pregnancy rate to 0.21 ± 0.02 for gestation length, and postweaning traits were moderate to high with feed conversion ratio at 0.22 ± 0.06 to mid-metabolic weight at 0.89 ± 0.01. Both dry matter intake and mid-metabolic weight were genetically correlated with most fertility traits from −0.52 to 0.34. The genetic correlation between average daily gain and days to calving was moderately negative (–0.33 ± 0.16) as was residual feed intake with days to calving (–0.34 ± 0.17). Bigger cows with more feed intake and faster growth were more fertile, and residual feed intake had an unfavorable genetic correlation with days to calving, indicating that programs to select for feed efficiency should include fertility simultaneously in a selection index.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Wossenie Mebratie ◽  
Per Madsen ◽  
Rachel Hawken ◽  
Hélène Romé ◽  
Danye Marois ◽  
...  

Abstract Background The objectives of this study were to (1) simultaneously estimate genetic parameters for BW, feed intake (FI), and body weight gain (Gain) during a FI test in broiler chickens using multi-trait Bayesian analysis; (2) derive phenotypic and genetic residual feed intake (RFI) and estimate genetic parameters of the resulting traits; and (3) compute a Bayesian measure of direct and correlated superiority of a group selected on phenotypic or genetic residual feed intake. A total of 56,649 male and female broiler chickens were measured at one of two ages ($${\text{t}}$$ t or $${\text{t}} - 6$$ t - 6 days). BW, FI, and Gain of males and females at the two ages were considered as separate traits, resulting in a 12-trait model. Phenotypic RFI ($${\text{RFI}}_{\text{P}}$$ RFI P ) and genetic RFI ($${\text{RFI}}_{\text{G}}$$ RFI G ) were estimated from a conditional distribution of FI given BW and Gain using partial phenotypic and partial genetic regression coefficients, respectively. Results Posterior means of heritability for BW, FI and Gain were moderately high and estimates were significantly different between males and females at the same age for all traits. In addition, the genetic correlations between male and female traits at the same age were significantly different from 1, which suggests a sex-by-genotype interaction. Genetic correlations between $${\text{RFI}}_{\text{P}}$$ RFI P and $${\text{RFI}}_{\text{G }}$$ RFI G were significantly different from 1 at an older age but not at a younger age. Conclusions The results of the multivariate Bayesian analyses in this study showed that genetic evaluation for production and feed efficiency traits should take sex and age differences into account to increase accuracy of selection and genetic gain. Moreover, for communicating with stakeholders, it is easier to explain results from selection on $${\text{RFI}}_{\text{G}}$$ RFI G than selection on $${\text{RFI}}_{\text{P}}$$ RFI P , since $${\text{RFI}}_{\text{G}}$$ RFI G is genetically independent of production traits and it explains the efficiency of birds in nutrient utilization independently of energy requirements for production and maintenance.


2005 ◽  
Vol 56 (3) ◽  
pp. 211 ◽  
Author(s):  
K. L. Moore ◽  
D. J. Johnston ◽  
H-U. Graser ◽  
R. Herd

Insulin-like growth factor-I (IGF-I) concentration measured in the blood plasma of 6520 seedstock Angus beef cattle (3622 bulls and 2898 heifers) from eastern Australia between 2002 and 2004 was used to estimate the heritability of IGF-I and phenotypic and genetic correlations with net feed intake (NFI) and other production traits. The average concentration of IGF-I was 314 ng/mL measured at the average age of 242 days. A moderate heritability of 0.35 was estimated for IGF-I. IGF-I was further defined as being measured either at, or prior to, weaning (average age of 201 days) or post-weaning (average age 310 days). The genetic correlation between IGF-I recorded at the different ages was 1.0 ± 0.04. IGF-I and NFI were found to have a genetic correlation of 0.41 ± 0.21. IGF-I had positive genetic correlations of 0.22 ± 0.14, 0.19 ± 0.14, and 0.26 ± 0.15 with ultrasound-scanned subcutaneous fat depth at the rump (P8) and 12/13th rib (RIB) sites and intramuscular fat % (IMF), respectively. Corresponding phenotypic correlations were 0.14, 0.13, and 0.12, respectively, for P8, RIB, and IMF. IGF-I had low to moderate negative genetic correlations with growth traits. Direct genetic correlations for IGF-I of –0.22 ± 0.08, –0.17 ± 0.09 and –0.10 ± 0.14 were estimated with birth (BWT), 200-day (WT200), and 400-day (WT400) weights, respectively. Genetic correlations between the direct component of IGF-I and maternal components of BWT and WT200 were 0.15 ± 0.13 and 0.31 ± 0.11, respectively. Phenotypic correlations of the direct component of IGF-I with the direct components of BWT, WT200, and WT400 were –0.10, 0.06, and 0.16, respectively. Ultrasound-scanned eye muscle area (EMA) and IGF-I had genetic and phenotypic correlations of –0.22 ± 0.15 and 0.13, respectively. This study showed that IGF-I is heritable and genetically correlated with important production traits. The genetic correlations indicate that selection for lower IGF-I concentrations would result in cattle that have lower NFI (i.e. more feed efficient), are leaner, with increased growth, and possibly decreased maternal weaning weight.


2019 ◽  
Vol 97 (5) ◽  
pp. 2181-2187
Author(s):  
Ahmed A Elolimy ◽  
Emad Abdel-Hamied ◽  
Liangyu Hu ◽  
Joshua C McCann ◽  
Daniel W Shike ◽  
...  

Abstract Residual feed intake (RFI) is a widely used measure of feed efficiency in cattle. Although the precise biologic mechanisms associated with improved feed efficiency are not well-known, most-efficient steers (i.e., with low RFI coefficient) downregulate abundance of proteins controlling protein degradation in skeletal muscle. Whether cellular mechanisms controlling protein turnover in ruminal tissue differ by RFI classification is unknown. The aim was to investigate associations between RFI and signaling through the mechanistic target of rapamycin (MTOR) and ubiquitin-proteasome pathways in ruminal epithelium. One hundred and forty-nine Red Angus cattle were allocated to 3 contemporary groups according to sex and herd origin. Animals were offered a finishing diet for 70 d to calculate the RFI coefficient for each. Within each group, the 2 most-efficient (n = 6) and least-efficient animals (n = 6) were selected. Compared with least-efficient animals, the most-efficient animals consumed less feed (P < 0.05; 18.36 vs. 23.39 kg/d DMI). At day 70, plasma samples were collected for insulin concentration analysis. Ruminal epithelium was collected immediately after slaughter to determine abundance and phosphorylation status of 29 proteins associated with MTOR, ubiquitin-proteasome, insulin signaling, and glucose and amino acid transport. Among the proteins involved in cellular protein synthesis, most-efficient animals had lower (P ≤ 0.05) abundance of MTOR, p-MTOR, RPS6KB1, EIF2A, EEF2K, AKT1, and RPS6KB1, whereas MAPK3 tended (P = 0.07) to be lower. In contrast, abundance of p-EEF2K, p-EEF2K:EEF2K, and p-EIF2A:EIF2A in most-efficient animals was greater (P ≤ 0.05). Among proteins catalyzing steps required for protein degradation, the abundance of UBA1, NEDD4, and STUB1 was lower (P ≤ 0.05) and MDM2 tended (P = 0.06) to be lower in most-efficient cattle. Plasma insulin and ruminal epithelium insulin signaling proteins did not differ (P > 0.05) between RFI groups. However, abundance of the insulin-responsive glucose transporter SLC2A4 and the amino acid transporters SLC1A3 and SLC1A5 also was lower (P ≤ 0.05) in most-efficient cattle. Overall, the data indicate that differences in signaling mechanisms controlling protein turnover and nutrient transport in ruminal epithelium are components of feed efficiency in beef cattle.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 75-76
Author(s):  
Camren l Maierle ◽  
Andrew R Weaver ◽  
Eugene Felton ◽  
Scott P Greiner ◽  
Scott A Bowdridge

Abstract Residual feed intake (RFI) is quickly becoming the preferred measurement of efficiency in many species due to its inherent independence of most other important production traits. Making meaningful improvement in feed efficiency of sheep will require a consistent methodology to accurately identify efficient individuals. Due to difficulty in measuring this trait efforts must be made to incorporate efficiency data in large-scale genetic evaluations. The aim of this study was to evaluate lambs in a feedlot with large-scale genetic evaluations for feed efficiency calculated by residual feed intake (RFI) utilizing a Growsafe™ system. RFI was calculated by subtracting expected intake from actual intake. Expected intake was determined by regressing metabolic body size of mid-test weight. Regression determined ADG on actual intake for individuals in the population. Texel (n = 58) and Katahdin (n = 118) lambs were placed in a feedlot and fed in separate feeding trials, a complete pellet ad libitum as the sole source of nutrition. In this environment Texel and Katahdin lambs had expected ADG values (0.27 kg/day, 0.32 kg/day respectively) and actual intake data (2154.17 g/day, 1909.33 g/day respectively. After a period of adaptation, Texel average intake was determined over a period of 27 consecutive days and used to calculate individual RFI within the test population. Observable ranges of RFI (-0.62 – +0.62) were seen in the Texel lambs. At the start of the Katahdin trial lambs were separated by sex and FEC treatment. After a period of adaptation, Katahdin average intake was determined over a period of 42 consecutive days and used to calculate individual RFI within the test population. Observable ranges of RFI (-0.53 – +0.50) were seen in the Katahdin lambs as well. In both feeding trials RFI appeared to be normally distributed. Use of this technology may be useful in identifying superior individuals for feed efficiency.


2004 ◽  
Vol 84 (2) ◽  
pp. 177-185 ◽  
Author(s):  
F. S. Schenkel ◽  
S. P. Miller ◽  
J. W. Wilton

Genetic associations between feed efficiency, growth, and live ultrasound measured body composition traits were studied in purebred beef bulls of six breeds in Ontario bull test stations from 1991 to 2000. Feed traits included average daily feed intake (FI), feed conversion ratio (FCR), and residual feed intake [feed intake adjusted for production alone (RFIp) or production and backfat thickness (RFIb)]. Growth traits were average daily weight gain (ADG), mid-test metabolic weight (MW), hip height (HH), and scrotal circumference (SC). Body composition traits included ultrasound backfat thickness (BF), longissimus muscle area (LMA), and predicted percentage of intramuscular fat (IFAT). Bulls were measured every 28 d for weight and individual feed intake, and at the end of test for ultrasound body composition traits. Number of records per trait ranged from 2284 (FI) to 13 319 (ADG). Fixed effects of test group, breed and end of test age (within breed), and random effects of animal and herd of origin were modeled using REML bivariate analyses for all traits. Heritability estimates were moderate for all traits (0.30 to 0.55), except for IFAT (0.14). The genetic correlation between RFIp and RFIb was high (0.99) within breeds, but breeds ranked differently with respect to RFIp and RFIb. Genetic correlations of RFIb with ADG and backfat thickness were essentially zero, which indicate that selection on residual feed intake could be implemented to reduce feed intake and improve feed conversion without compromising growth or changing levels of subcutaneous fat. Key words: Central test, genetic correlation, heritability, residual feed intake


1982 ◽  
Vol 34 (3) ◽  
pp. 257-264 ◽  
Author(s):  
B. T. Wolf

ABSTRACTThe distribution of lean tissue between eight standard joints was examined in 956 crossbred lambs slaughtered at constant live weights of either 35 or 40 kg. The sire breeds used were the Dorset Down, Ile-de-France, Oldenburg, Oxford, Suffolk and Texel. Sire breed did not have a significant effect on the proportion of total carcass lean found in the higher-priced joints but did show significant differences in the proportion of total carcass lean found in individual joints, with a maximum difference of 7·7 g total lean per kg joint being recorded. Similarly, small but significant effects due to ewe age (1 to 3 years), rearing type (single, twin, triplet), sex (male castrate, female) and weight of total lean were reported for the proportion of total carcass lean found in different joints.Heritability estimates ranged from 0·07 (s.e. 008) to 0·65 (s.e. 0·16) for the proportion of total lean in the best-end neck and higher-priced joints respectively. Phenotypic standard deviations of 5·8g/kg and 17·9g/kg were reported for the proportion of total lean found in the best-end neck and the higher-priced joints respectively. The genetic correlations between the proportion of total lean in each of the higher-priced joints and the proportion of total lean in the higher-priced joints combined were positive. A genetic correlation of 017 (s.e. 0·20) was found for the relationship between average daily gain from birth to slaughter and the proportion of total lean in the higher-priced joints.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 347-347
Author(s):  
Pourya Davoudi ◽  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Siavash Salek Ardestani ◽  
Younes Miar

Abstract Feed cost is the major input cost in the mink industry and thus improvement of feed efficiency through selection for high feed efficient mink is necessary for the mink farmers. The objective of this study was to estimate the heritability, phenotypic and genetic correlations for different feed efficiency measures, including final body weight (FBW), daily feed intake (DFI), average daily gain (ADG), feed conversion ratio (FCR) and residual feed intake (RFI). For this purpose, 1,088 American mink from the Canadian Center for Fur Animal Research at Dalhousie Faculty of Agriculture were recorded for daily feed intake and body weight from August 1 to November 14 in 2018 and 2019. The univariate models were used to test the significance of sex, birth year and color as fixed effects, and dam as a random effect. Genetic parameters were estimated via bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.41±0.10, 0.37±0.11, 0.33±0.14, 0.24±0.09 and 0.22±0.09 for FBW, DFI, ADG, FCR and RFI, respectively. The genetic correlation (±SE) was moderate to high between FCR and RFI (0.68±0.15) and between FCR and ADG (-0.86±0.06). In addition, RFI had low non-significant (P > 0.05) genetic correlations with ADG (0.04 ± 0.26) and BW (0.16 ± 0.24) but significant (P < 0.05) high genetic correlation with DFI (0.74 ± 0.11) indicating that selection for lower RFI will reduce feed intake without adverse effects on the animal size and growth rate. The results suggested that RFI can be implemented in genetic/genomic selection programs to reduce feed intake in the mink production system.


Sign in / Sign up

Export Citation Format

Share Document