Potential solutions to the major greenhouse-gas issues facing Australasian dairy farming

2020 ◽  
Vol 60 (1) ◽  
pp. 10 ◽  
Author(s):  
R. J. Eckard ◽  
H. Clark

The Australasian dairy industry is facing the dual challenges of increasing productivity, while also reducing its emissions of the greenhouse gases (GHG) methane and nitrous oxide. Following the COP21 Paris Agreement, all sectors of the economy will be expected to contribute to GHG abatement. Enteric methane is the major source of GHG emissions from dairy production systems (>70%), followed by nitrous oxide (13%) and methane (12%) from animal waste, with nitrogen (N)-fertiliser use contributing ~3.5% of total on-farm non-carbon dioxide equivalent (non-CO2e) emissions. Research on reducing methane emissions from dairy cattle has focussed on feeding dietary supplements (e.g. tannins, dietary oils and wheat), rumen modification (e.g. vaccine, inhibitors), breeding and animal management. Research on reducing nitrous oxide emissions has focussed on improving N fertiliser efficiency and reducing urinary N loss. Profitable options for significant abatement on farm are still limited, with the industry focusing instead on improving production efficiency, while reducing emission intensity (t CO2e/t product). Absolute emission reduction will become an imperative as the world moves towards carbon neutrality by 2050 and, thus, a priority for research. However, even with implementation of best-practice abatement, it is likely that some residual emissions will remain in the foreseeable future. The soil organic carbon content of dairy soils under well fertilised, high-rainfall or irrigated permanent pastures are already high, therefore limiting the potential for further soil carbon sequestration as an offset against these residual emissions. The Australasian dairy industry will, therefore, also need to consider how these residual emissions will be offset through carbon sequestration mainly in trees and, to a more limited extent, increasing soil organic carbon.

Author(s):  
Zuzanna Jarosz ◽  
Antoni Faber

The aim of the study was to determine the impact of the analyzed factors on the regional differentiation of nitrous oxide emission values from the agricultural use of soil in Poland. In the analyses, the initial content of soil organic carbon, carbon sequestration and soil pH were taken into account as variables modifying the value of nitrous oxide emission. The results showed that regional differentiation of nitrous oxide emissions was shaped mainly by the initial content of soil organic carbon and carbon sequestration. The highest emission values, 3 to 3.5 times higher than in other regions, were identified in Lubuskie voivodship.


2003 ◽  
Vol 43 (3) ◽  
pp. 261 ◽  
Author(s):  
R. J. Farquharson ◽  
G. D. Schwenke ◽  
J. D. Mullen

Two issues prompted this paper. The first was the measured soil organic carbon decline in fertile northern Australian soils under continual cropping using traditional management practices. We wanted to see whether it was theoretically possible to maintain or improve soil organic carbon concentrations with modern management recommendations. The second was the debate about use of sustainability indicators for on-farm management, so we looked at soil organic carbon as a potential indicator of soil health and investigated whether it was useful in making on-farm crop decisions. The analytical results indicated first that theoretically the observed decline in soil organic carbon concentrations in some northern cracking clay soils can be halted and reversed under continuous cropping sequences by using best practice management. Second, the results and associated discussion give some support to the use of soil organic carbon as a sustainability indicator for soil health. There was a consistent correlation between crop input decisions (fertilisation, stubble management, tillage), outputs (yield and profits) and outcomes (change in soil organic carbon content) in the short and longer term. And this relationship depended to some extent on whether the existing soil organic carbon status was low, medium or high. A stock dynamics relationship is one where the change in a stock (such as soil organic carbon) through time is related not only to the management decisions made and other random influences (such as climatic effects), but also to the concentration or level of the stock itself in a previous time period. Against such a requirement, soil organic carbon was found to be a reasonable measure. However, the inaccuracy in measuring soil organic carbon in the paddock mitigates the potential benefit shown in this analysis of using soil organic carbon as a sustainability indicator.These results are based on a simulation model (APSIM) calibrated for a cracking clay (Vertosol) soil typical of much of the intensively-cropped slopes and plains region of northern New South Wales and southern Queensland, and need to be interpreted in this light. There are large areas of such soils in north-western New South Wales; however, many of these experience lower rainfalls and plant-available soil water capacities than in this case, and the importance of these characteristics must also be considered.


2014 ◽  
Vol 28 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Majid Mahmoodabadi ◽  
Elina Heydarpour

Abstract Soil organic carbon is one of the most important soil components, which acts as a sink for atmospheric CO2. This study focuses on the effect of different methods of organic matter application on the soil organic carbon sequestration in a 4-month experiment under controlled greenhouse conditions. Three rates of straw residue and farmyard manure were added to uncultivated and cropland soils. Two treatments of straw residue and farmyard manure incorporation were used into: a soil surface layer and 0-20 cm soil depth. The result showed that the application of organic matter, especially the farmyard manure incorporation led to a significant increase in the final soil organic carbon content. Higher amounts of soil organic carbon were stored in the cropland soil than in the uncultivated soil. On average, the soil surface layer treatment caused a higher sequestration of soil organic carbon compared to the whole soil depth treatment. If higher rates of organic matter were added to the soils, lower carbon sequestration was observed and vice versa. The result indicated that the carbon sequestration ranged farmyardmanure > strawresidue and cropland soil > uncultivated soil. The findings of this research revealed the necessity of paying more attention to the role of organic residue management in carbon sequestration and prevention of increasing global warming.


SOIL ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 91-105 ◽  
Author(s):  
Tino Colombi ◽  
Florian Walder ◽  
Lucie Büchi ◽  
Marlies Sommer ◽  
Kexing Liu ◽  
...  

Abstract. Arable soils may act as a sink in the global carbon cycle, but the prediction of their potential for carbon sequestration remains challenging. Amongst other factors, soil aeration is known to influence root growth and microbial activity and thus inputs and decomposition of soil organic carbon. However, the influence of soil aeration on soil organic carbon content has been explored only little, especially at the farm level. Here, we investigated relationships between gas transport properties and organic carbon content in the topsoil and subsoil of 30 fields of individual farms, covering a wide range of textural composition. The fields were managed either conventionally, organically, or according to no-till practice. Despite considerable overlap between the management systems, we found that tillage increased soil gas transport capability in the topsoil, while organic farming resulted in higher soil organic carbon content. Remarkably, higher gas transport capability was associated with higher soil organic carbon content, both in the topsoil and subsoil (0.53 < R2 < 0.71). Exogenous organic carbon inputs in the form of crop residues and organic amendments, in contrast, were not related to soil organic carbon content. Based on this, we conjecture that higher gas transport capability resulted in improved conditions for root growth, which eventually led to increased input of soil organic carbon. Our findings show the importance of soil aeration for carbon storage in soil and highlight the need to consider aeration in the evaluation of carbon sequestration strategies in cropping systems.


2020 ◽  
Author(s):  
Mohammad I. Khalil ◽  
Bruce A. Osborne

&lt;p&gt;Quantification and reporting of soil organic carbon density (SOC&amp;#961;) changes and greenhouse gases (GHGs), particularly nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O), emissions from agricultural soils using higher tiers remain a key challenge. Modelling approaches can provide largescale land use and management coverage whilst minimizing spatial and temporal variability. Identification of an advanced tool to simulate the net balance of SOC and GHG for mitigation, offsetting and policy formulation is a global concern. We tested the widely used latest version of Denitrification-Decomposition (DNDC95) model, a process-based one, to simulate both SOC&amp;#961; and N&lt;sub&gt;2&lt;/sub&gt;O emissions and their annual changes over 45 years. The moist temperate grass silage was managed with inorganic fertilizer as urea and organic ones as cattle and pig slurry applied at low, medium and high rates. The model performed well for urea, cattle slurry and pig slurry to predict both SOC&amp;#961; and N&lt;sub&gt;2&lt;/sub&gt;O emissions. The measured data for SOC&amp;#961; at a 0-15 cm depth for unfertilized and urea-fertilized fields (73-77 t C ha&lt;sup&gt;-1&lt;/sup&gt;) were significantly higher than the simulated ones (54-55). However, the model-estimates showed good agreement with the measured values (R&lt;sup&gt;2 &lt;/sup&gt;= 0.66) and revealed increased C sequestration with increasing added-C (0.46&amp;#177;0.06 vs. 0.37&amp;#177;0.01 t C ha&lt;sup&gt;-1 &lt;/sup&gt;yr&lt;sup&gt;-1&lt;/sup&gt;). The model simulated N&lt;sub&gt;2&lt;/sub&gt;O emissions well and the resulted emission factors (EFs) estimated on average to be 0.35 &amp;#177; 0.02, 1.80 &amp;#177; 0.28 and 1.53 &amp;#177; 0.41%, respectively, which are close to national and IPCC estimates. Variations in the simulated-SOC&amp;#961; and derived-EFs could be explained mainly by differences in nitrogen inputs (49%) and added-C (62%), respectively, where the impact of rainfall (15-16%) and temperature (10-11%) was identical. Generally, SOC&amp;#961; and N&lt;sub&gt;2&lt;/sub&gt;O EFs were sensitive to soil texture, pH, bulk density and organic carbon (R&lt;sup&gt;2 &lt;/sup&gt;= 0.77-0.99) but annual changes in SOC&amp;#961; decreased with the latter two (R&lt;sup&gt;2 &lt;/sup&gt;= -0.99). Application of animal slurry during autumn demonstrated more C being sequestered in the clay loam soil (Dystric Gleysol) and strategic replacement of slurry either after the second or third silage cuts by urea decreased N&lt;sub&gt;2&lt;/sub&gt;O EFs significantly. Results &amp;#160;imply that the updated DNDC95 could provide an accurate representation of the key drivers influencing both SOC&amp;#961; and N&lt;sub&gt;2&lt;/sub&gt;O fluxes in temperate grass silage.&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Amelie Goldberg

<p>Carbon footprints show the carbon impacts of food products. They are argued here to reflect these impacts more accurately than 'food miles'. New Zealand research has shown that our major primary sectors are more efficient in terms of carbon dioxide emissions than their British equivalents over the farming and shipping stages of the lifecycle. However, little research has examined other stages, such as road and rail freight and meat processing within New Zealand. Furthermore, the agro-food sector only has partial knowledge about its greenhouse gas  GHG) emissions from 'farm gate to plate' and is not yet fully prepared to implement GHG mitigation strategies. The aims of this study are to 1) calculate the carbon footprints of beef and lamb produced and consumed in New Zealand using a lifecycle approach (including all GHGs), and 2) evaluate, through key stakeholder interviews, the applicability of the carbon footprint concept to New Zealand for addressing consumer environmental concerns. The calculations show that the GHG footprints (all GHGs) of beef and lamb are comprised, for the most part, of on-farm methane and nitrous oxide emissions. Domestic and international freight contribute less than 5% to these footprints, and data from a case study of two meat processing plants suggest that meat processing emissions contributes even less than freight emissions. When leaving aside on-farm methane and nitrous oxide emissions, meat processing and freight contribute less than half to the carbon dioxide (CO2) footprints. Interviews conducted for this study show that key stakeholder attitudes to these issues are varied. Responses from government representatives centred on the need to support the agro-food sector in responding to foreign market demands; the response from industry was mixed but suggests that it is prepared to account for its GHG emissions, showing a preference for carbon footprints over food miles. Environmental NGOs warned that there are risks to New Zealand if it continues to rely on a 'clean green' image mostly due to its natural comparative advantage, and fails to account for its emissions.</p>


2021 ◽  
Author(s):  
◽  
Amelie Goldberg

<p>Carbon footprints show the carbon impacts of food products. They are argued here to reflect these impacts more accurately than 'food miles'. New Zealand research has shown that our major primary sectors are more efficient in terms of carbon dioxide emissions than their British equivalents over the farming and shipping stages of the lifecycle. However, little research has examined other stages, such as road and rail freight and meat processing within New Zealand. Furthermore, the agro-food sector only has partial knowledge about its greenhouse gas  GHG) emissions from 'farm gate to plate' and is not yet fully prepared to implement GHG mitigation strategies. The aims of this study are to 1) calculate the carbon footprints of beef and lamb produced and consumed in New Zealand using a lifecycle approach (including all GHGs), and 2) evaluate, through key stakeholder interviews, the applicability of the carbon footprint concept to New Zealand for addressing consumer environmental concerns. The calculations show that the GHG footprints (all GHGs) of beef and lamb are comprised, for the most part, of on-farm methane and nitrous oxide emissions. Domestic and international freight contribute less than 5% to these footprints, and data from a case study of two meat processing plants suggest that meat processing emissions contributes even less than freight emissions. When leaving aside on-farm methane and nitrous oxide emissions, meat processing and freight contribute less than half to the carbon dioxide (CO2) footprints. Interviews conducted for this study show that key stakeholder attitudes to these issues are varied. Responses from government representatives centred on the need to support the agro-food sector in responding to foreign market demands; the response from industry was mixed but suggests that it is prepared to account for its GHG emissions, showing a preference for carbon footprints over food miles. Environmental NGOs warned that there are risks to New Zealand if it continues to rely on a 'clean green' image mostly due to its natural comparative advantage, and fails to account for its emissions.</p>


Sign in / Sign up

Export Citation Format

Share Document