Low temperature induced spikelet sterility in rice. II. Effects of panicle and root temperatures

2003 ◽  
Vol 54 (10) ◽  
pp. 947 ◽  
Author(s):  
T. A. Gunawardena ◽  
S. Fukai ◽  
F. P. C. Blamey

Low temperatures impose restrictions on rice (Oryza sativa L.) production at high latitudes. This study is related to low temperature damage that can arise mid-season during the panicle development phase. The objective of this study was to determine whether low temperature experienced by the root, panicle, or foliage is responsible for increased spikelet sterility. In temperature-controlled glasshouse experiments, water depth, and water and air temperatures, were changed independently to investigate the effects of low temperature in the root, panicle, and foliage during microspore development on spikelet sterility. The total number of pollen and number of engorged pollen grains per anther, and the number of intercepted and germinated pollen grains per stigma, were measured. Spikelet sterility was then analysed in relation to the total number of pollen grains per spikelet and the efficiency with which these pollen grains became engorged, were intercepted by the stigma, germinated, and were involved in fertilisation. There was a significant combined effect of average minimum panicle and root temperatures on spikelet sterility that accounted for 86% of the variation in spikelet sterility. Total number of pollen grains per anther was reduced by low panicle temperature, but not by low root temperature. Whereas engorgement efficiency (the percentage of pollen grains that were engorged) was determined by both root and panicle temperature, germination efficiency (the percentage of germinated pollen grains relative to the number of engorged pollen grains intercepted by the stigma) was determined only by root temperature. Interception efficiency (i.e. percentage of engorged pollen grains intercepted by the stigma), however, was not affected by either root or panicle temperature. Engorgement efficiency was the dominant factor explaining the variation in spikelet sterility. It is concluded that both panicle and root temperature affect spikelet sterility in rice when the plant encounters low temperatures during the microspore development stage.

2006 ◽  
Vol 57 (1) ◽  
pp. 89 ◽  
Author(s):  
T. C. Farrell ◽  
K. M. Fox ◽  
R. L. Williams ◽  
S. Fukai ◽  
L. G. Lewin

Low temperature during microspore development increases spikelet sterility and reduces grain yield in rice (Oryza sativa L.). The objectives of this study were to determine genotypic variation in spikelet sterility in the field in response to low temperature and then to examine the use of physio-morphological traits at flowering to screen for cold tolerance. Multiple-sown field experiments were conducted over 4 consecutive years in the rice-growing region of Australia to increase the likelihood of encountering low temperature during microspore development. More than 50 cultivars of various origins were evaluated, with 7 cultivars common to all 4 years. The average minimum temperature for 9 days during microspore development was used as a covariate in the analysis to compare cultivars at a similar temperature. The low-temperature conditions in Year 4 identified cold-tolerant cultivars such as Hayayuki and HSC55 and susceptible cultivars such as Sasanishiki and Doongara. After low temperature conditions, spikelet sterility was negatively correlated with the number of engorged pollen grains, anther length, anther area, anther width, and stigma area. The number of engorged pollen grains and anther length were found to be facultative traits as their relationships with spikelet sterility were identified only after cold water exposure and did not exist under non-stressed conditions.


2019 ◽  
Vol 46 (8) ◽  
pp. 766 ◽  
Author(s):  
Yang Yu ◽  
Zhenling Zhou ◽  
Hanchun Pu ◽  
Baoxiang Wang ◽  
Yunhui Zhang ◽  
...  

The chloroplast is an essential photosynthetic apparatus that is more sensitive to low temperatures than other organelles. Sigma factors were revealed regulating specific gene expression for maintaining photosynthetic efficiency and adapting to physiological and environmental conditions. However, the regulatory mechanisms of SIG genes supporting chloroplast development under low temperature in rice have not yet been reported. Here, we uncovered the essential role of OsSIG2A in rice chloroplast development at low temperatures by a newly reported thermo-sensitive chlorophyll deficient 12 (tcd12) mutant, which exhibited albino leaves with decreased chlorophyll content and malformed chloroplasts at seedling stage under low temperature. OsSIG2A is a typical chloroplast-localised RNA polymerase sigma factor, and constitutively expresses in different rice tissues, especially for young leaves and stems. Moreover, the transcription level of both PEP- and NEP- dependent genes, which are necessary for chloroplast development at early leaf development stage, was greatly affected in the tcd12 mutant under low temperature. Taken together, our findings indicate that OsSIG2A is required for early chloroplast differentiation under low temperatures by regulating plastid genes expression.


2005 ◽  
Vol 56 (6) ◽  
pp. 625 ◽  
Author(s):  
T. A. Gunawardena ◽  
S. Fukai

Increased grain yield in response to high rates of application of nitrogen (N) fertiliser is often limited by increased spikelet sterility, particularly under low temperature conditions in the New South Wales (NSW) rice industry. In 3 field experiments, different N rates were applied for different sowing dates to investigate the interaction between N rate and temperature during microspore development on spikelet sterility and grain yield. In one experiment the effect of water depth on spikelet sterility was also investigated. Engorged pollen production, spikelet sterility, and yield and its components were recorded. Application of N affected a few different processes that lead into spikelet sterility. Application of N at both pre-flood (PF) and panicle initiation (PI) significantly reduced the number of engorged pollen grains per anther, which was negatively correlated with spikelet sterility. Application of N and low temperature during microspore development with the absence of deep water also decreased pollen engorgement efficiency (the percentage of pollen grains that were engorged). Application of N further increased spikelet density, which, in turn, increased both spikelet sterility and grain yield. The combined effect of spikelet density and low temperature during microspore development explained the 44% of variation in the number of engorged pollen grains per anther. Grain yield was decreased by low temperature during microspore development in the shallow water when N was applied. Spikelet sterility as a result of late sowing was strongly correlated with minimum temperature during flowering. It is concluded that N application reduced pollen number per anther as a result of increased spikelet density, and this made the spikelets more susceptible to low temperature, causing increased spikelet sterility.


2003 ◽  
Vol 54 (10) ◽  
pp. 937 ◽  
Author(s):  
T. A. Gunawardena ◽  
S. Fukai ◽  
F. P. C. Blamey

Low temperature during panicle development in rice increases spikelet sterility. This effect is exacerbated by high rates of nitrogen (N) application in the field. Spikelet sterility induced by low temperature and N fertilisation was examined in glasshouse experiments to clarify the mechanisms involved. In two glasshouse experiments, 12-h periods of low (18/13�C) and high (28/23�C) day/night temperatures were imposed over periods of 5–7 days during panicle development, to determine the effects of low temperature and N fertilisation on spikelet sterility. In one experiment, 50% sunlight was imposed together with low temperature to investigate the additive effects of reduced solar radiation and low temperature. The effect of increased tillering due to N fertilisation was examined by a tiller removal treatment in the same experiment. Pollen grain number and spikelet sterility were recorded at heading and harvest, respectively. Although there was no significant effect of low temperature on spikelet sterility in the absence of applied N, low temperature greatly increased spikelet sterility as a result of a reduction in the number of engorged pollen grains per anther in the presence of applied N. Spikelet sterility was strongly correlated with the number of engorged pollen grains per anther. Low temperature during very early (late stage of spikelet differentiation–pollen mother cell stage) and peak (second meiotic division stage–early stage of extine formation) microspore development caused a severe reduction in engorged pollen production mainly as a result of reduced total pollen production. Unlike low temperature, the effect of shading was rather small. The increased tillering due to application of high rates of N, increased both spikelet number per plant and spikelet sterility under low temperature conditions. The removal of tillers as they appeared reduced the number of total spikelets per plant and maintained a large number of engorged pollen grains per anther which, in turn, reduced spikelet sterility. The number of engorged pollen grains per anther determined the numbers of intercepted and germinated pollen grains on the stigma. It is concluded that N increased tillering and spikelet number per plant and this, in turn, reduced the number of engorged pollen grains per anther, leading into increased spikelet sterility under low temperature condition.


2006 ◽  
Vol 42 (3) ◽  
pp. 337-349 ◽  
Author(s):  
M. G. ALI ◽  
R. E. L. NAYLOR ◽  
S. MATTHEWS

When differences are observed between genotypes in their response to low temperatures at germination, it has been generally assumed these are purely genetic. Laboratory experiments were carried out to evaluate the effects of physiological age on the temperature responses of 13 rice genotypes from Bangladesh in order to clarify whether (a) differences in seed germination at low temperature represented genetic differences or differences in the physiological state of the particular seed lot used and (b) whether genotype performance at higher temperatures was indicative of performance at lower temperatures. A higher initial seed moisture content (mc) was associated with lower initial viability (Ki). The base temperature for germination differed by less than 1 °C between genotypes. Seeds remaining ungerminated at low temperatures usually germinated when transferred to 21 °C. The thermal time requirement to reach t50 (θ) differed widely between genotypes. Lower optimum temperatures for germination were associated with lower thermal time requirements. Ageing seeds for 24 hours at 24 % mc and 45 °C significantly reduced final germination on a thermal gradient table at all temperatures below 20.8 °C in genotype BR29 but only below 16.5 °C in BR11. The rates of germination (seeds d−1) of aged seeds were also lower at all temperatures. Germination of high quality seeds of four genotypes were compared at 21 °C and 11 °C both before and after ageing (at 24 % mc and 45 °C). Ageing consistently reduced the rates of germination at both 21 °C and 11 °C. Increased ageing time progressively reduced the rate of germination of all seed lots at both temperatures. The rates of germination at 11 °C and 21 °C were positively and significantly (p < 0.01) related to final germination at the lower temperature of 11 °C. These results demonstrate that seed physiological quality as well as genotype might influence the final germination and rate of germination of rice genotypes at low temperatures. This information will be useful for breeders involved in selection of lines suitable for growing in cooler seasons.


2014 ◽  
Vol 28 (24) ◽  
pp. 1450193
Author(s):  
Xin-Jun Wang ◽  
Xiao-Fang Peng ◽  
Meng-Dong He

In this paper, we investigate low-temperature thermal conductance in three-dimensional nanowire embedded with phonon cavity based on the full scalar model of elasticity. The results show that at very low temperatures, the cavity can enhance the thermal conductance in certain lateral-width range, just as the constructive coupling of more phonon-modes excited in the cavity with modes in the transport region. At higher temperatures, however, the scattering of more interfaces formed from the cavity become a dominant factor to suppress the phonon transmission. Moreover, it is found that while the material in the cavity is substituted for the material with higher sound velocity than that in the transport region, the thermal conductance is also enhanced.


Genetics ◽  
1982 ◽  
Vol 101 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Daniel Zamir ◽  
Steven D Tanksley ◽  
Richard A Jones

ABSTRACT Pollen grains were harvested from an interspecific F1 hybrid between the cultivated tomato, Lycopersicon esculentum Mill., and its wild relative Lycopersicon hirsutum Humb. & Bonpl., a low temperature tolerant accession originating from an altitude of 3200 m in the Peruvian Andes. The two species differ for electrophoretically-detectable loci that mark six (possibly seven) of the 12 tomato chromosomes. Isozyme analysis of the BC1 populations derived from controlled pollinations at normal and low temperatures indicates a significant skewing of allelic frequencies favoring two independent chromosome segments of L. hirsutum at low temperatures. The results demonstrate that gametophytic selection for low temperature tolerance of tomato pollen is determined, at least in part, by genes expressed in the haploid pollen.


2019 ◽  
Vol 46 (No. 1) ◽  
pp. 9-16
Author(s):  
Elida Contreras ◽  
Javiera Grez ◽  
José A Alcalde ◽  
Davide Neri ◽  
Marina Gardella

In raspberry, the expression of the primocane fruiting trait is influenced by the environment. Although there are several factors that influence the expression of this character, it is well known that low temperatures that occur during the growth season of the primocane, are important and affect the flowering. In this study, plants in their early stages of development were exposed to low temperatures (2°C) for one month, in a dark cold chamber. The following genotypes primocane and floricane were used: ‘UC103’, ‘Autumn Bliss’, ‘Heritage’, ‘Meeker’ and ‘Tulameen’. Flowering and growth were recorded until the end of the season and the morphology of the meristem was characterized in this moment. Interaction between cold and genotype was detected in all parameters studied. In ‘Heritage’, a slight primocane, growth and flowering were favoured by exposure to cold. Thereby, low temperature affects flowering, but this effect depends on primocane fruiting degree of each genotype, slight primocane the cold favored flowering and growth. However, strongly primocane the cold had no effect on flowering and growth.


2020 ◽  
Vol 21 (4) ◽  
pp. 1390 ◽  
Author(s):  
Yuqing Zhao ◽  
Qiaohong Han ◽  
Chunbang Ding ◽  
Yan Huang ◽  
Jinqiu Liao ◽  
...  

Rice (Oryza sativa L.) frequently suffers in late spring from severe damage due to cold spells, which causes the block of chlorophyll biosynthesis during early rice seedling greening. However, the inhibitory mechanism by which this occurs is still unclear. To explore the responsive mechanism of rice seedlings to low temperatures during greening, the effects of chilling stress on chlorophyll biosynthesis and plastid development were studied in rice seedlings. Chlorophyll biosynthesis was obviously inhibited and chlorophyll accumulation declined under low temperatures during greening. The decrease in chlorophyll synthesis was due to the inhibited synthesis of δ-aminolevulinic acid (ALA) and the suppression of conversion from protochlorophyllide (Pchlide) into chlorophylls (Chls). Meanwhile, the activities of glutamate-1-semialdehyde transaminase (GSA-AT), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were downregulated under low temperatures. Further investigations showed that chloroplasts at 18 °C had loose granum lamellae, while the thylakoid and lamellar structures of grana could hardly develop at 12 °C after 48 h of greening. Additionally, photosystem II (PSII) and photosystem I (PSI) proteins obviously declined in the stressed seedlings, to the point that the PSII and PSI proteins could hardly be detected after 48 h of greening at 12 °C. Furthermore, the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) and cell death were all induced by low temperature. Chilling stress had no effect on the development of epidermis cells, but the stomata were smaller under chilling stress than those at 28 °C. Taken together, our study promotes more comprehensive understanding in that chilling could inhibit chlorophyll biosynthesis and cause oxidative damages during greening.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Sign in / Sign up

Export Citation Format

Share Document