Corrigendum - Yield depression due to phosphate fertilizer in sugar-cane

1964 ◽  
Vol 15 (4) ◽  
pp. 537
Author(s):  
RA Yates

A large series of trials involving phosphate fertilizer showed that yields of cane could be reduced by the application of superphosphate at rates of up to 2 cwt/acre in four distinct areas. In these areas, the yield response to phosphate was dependent on the rate of nitrogen fertilization; yield depression only occurred where the nitrogen supply was adequate; phosphate could increase yields at low nitrogen. In most cases, the yield depression was associated with a low calcium/ magnesium (Ca/Mg) ratio in the soil (a ratio of less than 3.0 in terms of milliequivalents). On soils with high Ca/Mg ratios, regressions of yield response on soil or leaf phosphate indicated critical levels similar to those accepted elsewhere. Significant regressions could not be obtained from soils with low Ca/Mg ratios. A few trials testing a phosphate x trace element interaction indicated that the phosphate yield depression in at least one area was due to an induced deficiency of some trace element. The trace element effect is independent of the Ca/Mg ratio effect.

1964 ◽  
Vol 15 (4) ◽  
pp. 537
Author(s):  
RA Yates

A large series of trials involving phosphate fertilizer showed that yields of cane could be reduced by the application of superphosphate at rates of up to 2 cwt/acre in four distinct areas. In these areas, the yield response to phosphate was dependent on the rate of nitrogen fertilization; yield depression only occurred where the nitrogen supply was adequate; phosphate could increase yields at low nitrogen. In most cases, the yield depression was associated with a low calcium/ magnesium (Ca/Mg) ratio in the soil (a ratio of less than 3.0 in terms of milliequivalents). On soils with high Ca/Mg ratios, regressions of yield response on soil or leaf phosphate indicated critical levels similar to those accepted elsewhere. Significant regressions could not be obtained from soils with low Ca/Mg ratios. A few trials testing a phosphate x trace element interaction indicated that the phosphate yield depression in at least one area was due to an induced deficiency of some trace element. The trace element effect is independent of the Ca/Mg ratio effect.


1982 ◽  
Vol 60 (12) ◽  
pp. 2741-2744 ◽  
Author(s):  
R. Frossard ◽  
N. J. Fokkema

Green flag leaves of spring wheat grown with low or high nitrogen supply in the form of Ca(NO3)2 were inoculated with Sporobolomyces roseus. Growth of the yeast in a controlled environment was followed for several days by culturing techniques. No consistent differences were found between the development of S. roseus on leaves from low or high nitrogen treated plants, suggesting that leaf exudates from low nitrogen treated plants still contain enough nitrogen compounds to support growth of S. roseus. Nitrogen fertilization obviously seems not to be an appropriate means to manipulate the phyllosphere mycoflora.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mathias Frontini ◽  
Arnaud Boisnard ◽  
Julien Frouin ◽  
Malika Ouikene ◽  
Jean Benoit Morel ◽  
...  

Abstract Background Nitrogen fertilization is known to increase disease susceptibility, a phenomenon called Nitrogen-Induced Susceptibility (NIS). In rice, this phenomenon has been observed in infections with the blast fungus Magnaporthe oryzae. A previous classical genetic study revealed a locus (NIS1) that enhances susceptibility to rice blast under high nitrogen fertilization. In order to further address the underlying genetics of plasticity in susceptibility to rice blast after fertilization, we analyzed NIS under greenhouse-controlled conditions in a panel of 139 temperate japonica rice strains. A genome-wide association analysis was conducted to identify loci potentially involved in NIS by comparing susceptibility loci identified under high and low nitrogen conditions, an approach allowing for the identification of loci validated across different nitrogen environments. We also used a novel NIS Index to identify loci potentially contributing to plasticity in susceptibility under different nitrogen fertilization regimes. Results A global NIS effect was observed in the population, with the density of lesions increasing by 8%, on average, under high nitrogen fertilization. Three new QTL, other than NIS1, were identified. A rare allele of the RRobN1 locus on chromosome 6 provides robust resistance in high and low nitrogen environments. A frequent allele of the NIS2 locus, on chromosome 5, exacerbates blast susceptibility under the high nitrogen condition. Finally, an allele of NIS3, on chromosome 10, buffers the increase of susceptibility arising from nitrogen fertilization but increases global levels of susceptibility. This allele is almost fixed in temperate japonicas, as a probable consequence of genetic hitchhiking with a locus involved in cold stress adaptation. Conclusions Our results extend to an entire rice subspecies the initial finding that nitrogen increases rice blast susceptibility. We demonstrate the usefulness of estimating plasticity for the identification of novel loci involved in the response of rice to the blast fungus under different nitrogen regimes.


2016 ◽  
Author(s):  
Chao Song ◽  
Changli Liu ◽  
Guilin Han

Abstract. Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, are strongly influenced by anthropogenic perturbations such as agricultural fertilization. Different fertilizer may exert a different impact on carbonate weathering, but their differences are not still well-known so far. In this study, a field column experiment was employed to explore the responses of carbonate weathering to different fertilizer addition. The eleven different treatments with three replicates including control, NH4NO3, NH4HCO3, NaNO3, NH4Cl, (NH4)2CO3, Ca3(PO4)2, (NH4)3PO4, fused calcium-magnesium phosphate fertilizer (Ca-Mg-P), Urea and K2CO3 were established in this column experiment, where limestone and dolostone tablets were buried at the bottom of each to determine the weathering amount and ratio of carbonate in soil. The result showed that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+, and the addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to common ion effect. Whereas the (NH4)3PO4 and NaNO3 addition did not impact significantly on carbonate weathering. The results of NaNO3 treatment seem to be raising a new question: the little impact of nitrate on carbonate weathering may result in the overestimation of impact of N-fertilizer on CO2 consumption by carbonate weathering at the regional/global scale if the effect of NO3 and NH4 are not distinguished. Moreover, in order to avoid misunderstanding more or less, the statement that nitrogenous fertilizer can aid carbonate weathering should be replaced by ammonium fertilizer.


1985 ◽  
Vol 83 (1) ◽  
pp. 107-115 ◽  
Author(s):  
G. K. Judel ◽  
W. G. Gebauer ◽  
K. Mengel

1997 ◽  
Vol 75 (1) ◽  
pp. 108-120 ◽  
Author(s):  
Jaanus Paal ◽  
Eli Fremstad ◽  
Tõnu Möls

The effect of nitrogen fertilization on species cover, increment of shrubs, tissue nitrogen, and soil parameters was tested during a 3-year experiment in a low alpine plant community dominated by Betula nana in the Dovre mountains, south-central Norway. The doses used were 1.2 and 6.1 g N/m2, corresponding to 0.72 and 3.6 times, respectively, the annual deposition of nitrogen in southwest Norway. Statistical analysis using SAS ANOVA and GLM procedures were applied to different types of models. The cover of species and growth forms showed no significant response to additional nitrogen supply. The increment of shrubs was not significantly affected by the fertilization, except for the year factor. Incorporation of nitrogen into plant tissue was not evident. No effects were found on soil parameters. Key words: fertilization, alpine tundra, shrubs, nitrogen.


1969 ◽  
Vol 43 (4) ◽  
pp. 215-227
Author(s):  
José Vicente-Chandler ◽  
Servando Silva ◽  
Jacinto Figarella

The effects of nitrogen rates ranging from 0 to 2,000 pounds of N per acre yearly and of 40-, 60-, and 90-day harvest intervals on the yield and composition of Napier grass and on soil acidity, were determined for three consecutive years. Yields increased with nitrogen fertilization to at least the 800-pound level during all seasons. Crude-protein contents and protein yields increased with nitrogen fertilization up to the 2,000-pound level. More than 60 percent of the fertilizer nitrogen was recovered in the forage at all rates up to 1,200 pounds per acre yearly, but efficiency of utilization in terms of dry matter produced per pound of nitrogen decreased beyond the 400- pound level. The phosphorus and potassium contents of the forage decreased, but the lignin content increased with increasing nitrogen rates. The calcium and magnesium contents were not markedly affected by nitrogen fertilization. Dry-matter and protein yields and lignin content of the forage increased, while the protein, phosphorus, calcium, magnesium, and potassium contents decreased with length of harvest interval. With a 60-day harvest interval and 800 pounds of nitrogen per acre yearly, which seemed to be the optimum combination, Napier grass yielded 44,561 pounds of dry matter, or about 130 tons of green forage, per acre yearly, containing 9.7 percent of protein. With this treatment, Napier grass removed 674 pounds of nitrogen, 554 of potassium, and 120 each of calcium, magnesium, and phosphorus per acre yearly from the soil. Over-all yields did not decrease during the 3 years of experimentation but seasonal yields varied by as much as 70 percent of the average. The treatments affected residual yields obtained more than 6 months after the experiment was terminated. The application of 800 pounds of N as ammonium sulfate per acre annually over a 3-year period caused a drop of 3 pH units and a loss of 10.4 m.e. of exchangeable bases per 100 gm. of soil in the upper 6 inches of soil.


1958 ◽  
Vol 38 (2) ◽  
pp. 241-245 ◽  
Author(s):  
K. S. MacLean ◽  
W. M. Langille

A study was made of the major and minor element status of healthy and unhealthy alfalfa. Elements determined were calcium, magnesium, potassium, phosphorus, molybdenum, manganese, zinc and boron. Unhealthy alfalfa was found to be deficient in potassium and/or boron, the critical levels being 1 per cent and 20 parts per million respectively.The levels of other major and minor elements were similar in both healthy and unhealthy plants. Available soil boron was apparently positively correlated with plant tissue boron.


Sign in / Sign up

Export Citation Format

Share Document