Influence of earthworms, Aporrectodea spp. (Lumbricidae), on pasture production in south-eastern Australia

1999 ◽  
Vol 50 (7) ◽  
pp. 1247 ◽  
Author(s):  
G. H. Baker ◽  
P. J. Carter ◽  
V. J. Barrett

Most of the earthworms now found in agricultural fields in south-eastern Australia are exotic, patchily distributed, mineral soil dwellers (endogeic species). The influence of two of the most common endogeic species, Aporrectodea caliginosa and A. trapezoides, on pasture production was compared with that of another exotic, surface-feeding, deep-burrowing (anecic) species, A. longa, which is essentially restricted in its Australian distribution to Tasmania. Comparisons were made by introducing 4 different densities of the worms in cages at 10 field sites and measuring pasture production for approximately 5 months. All 3 species increased pasture production at most of the 10 sites. Increases in pasture production were greatest where original pasture production was low. Pasture production increased with earthworm density. Averaged across sites, earthworms increased pasture production by up to 61%. Significant increases in yield were detected with ≥214 A. longa/m 2 and ≥429 A. caliginosa or A. trapezoides/m 2. A. longa is a much bigger worm than A. caliginosa and A. trapezoides. If the initial number of worms introduced to the cages was taken as the measure of earthworm ‘abundance’, then A. longa increased pasture production more than the 2 endogeic species. If the biomass of introduced worms was taken as the measure of abundance, then the reverse was the case. A. longa reduced nitrogen levels in some soils. Phosphorus levels were not affected. No residual effects on pasture production were detected when soil that had been improved by earthworms was potted and resown with ryegrass. Broad scale introduction of A. caliginosa, A. longa, or A. trapezoides to sites lacking them in south-eastern Australia is likely to improve pasture production significantly. Addition of A. longa to existing communities of endogeic species should further increase pasture yield by enhancing functional diversity.


2006 ◽  
Vol 57 (10) ◽  
pp. 1057 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
M. K. Conyers ◽  
L. J. C. Castleman ◽  
R. P. Fisher ◽  
...  

‘Managing Acid Soils Through Efficient Rotations (MASTER)’ is a long-term pasture–crop rotation experiment commenced in 1992. One of the objectives was to demonstrate the extent of crop, pasture, and animal responses to lime application on a typical acidic soil in the 500–800 mm rainfall zone of south-eastern Australia. Two types of pastures (perennial v. annual pastures) with or without lime application were established in 1992. Fifteen- to eighteen-month-old Merino hoggets were used as test animals and were changed annually. This paper reports the results of sheep responses to liming from the 4 continuous pasture treatments over 6 years from 1992 to 1997. The stocking rate was the same on all plots within a treatment during each rotation period, but was varied between treatments based on the pasture availability and sheep body condition. The most important findings from this study are that the limed treatments carried 29% and 27% more stock (up to 4 DSE/ha) than the unlimed treatments for perennial and annual pastures, respectively. As a result, the limed perennial pastures produced 27% more liveweight gain (62 kg/ha.year) and 28% more greasy wool (13 kg/ha.year) than unlimed perennial pastures, whereas the limed annual pastures produced 34% more liveweight gain (77 kg/ha.year) and 24% more greasy wool (11 kg/ha.year) than unlimed annual pastures. The significant responses to lime in liveweight and wool production were detected from the second growing season after the pastures were established. The increased sheep productivity on the limed treatment was due to a combination of increased pasture production and improved pasture quality. Perennial pastures showed a slight advantage in wool production, but not in liveweight gain. However, the seasonal variation of liveweight was greater on annual pastures than on perennial pastures. The larger variation in liveweight change could lead to more adverse effects on wool quality especially at high grazing pressures. Grazing management can be used to manipulate pasture and animal productivity to increase profits from lime use.



2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
David Nash ◽  
Craig Butler ◽  
Justine Cody ◽  
Michael St. J. Warne ◽  
Mike J. McLaughlin ◽  
...  

Biosolids were applied to a pasture and a vineyard in south-eastern Australia. At both sites, soil Cd, Cu, and Zn concentrations linearly increased with biosolids application rates although not to the extent of exceeding soil quality guidelines. Biosolids marginally increased soil C and N concentrations at the pasture site but significantly increased P concentrations. With lower overall soil fertility at the vineyard, biosolids increased C, N, and P concentrations. At neither site did biosolids application affect soil microbial endpoints. Biosolids increased pasture production compared to the unfertilised control but had little effect on grape production or quality. Interestingly, over the 3-year trial, there was no difference in pasture production between the biosolids treated plots and plots receiving inorganic fertiliser. These results suggest that biosolids could be used as a fertiliser to stimulate pasture production and as a soil conditioner to improve vineyard soils in this region.





Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 807 ◽  
Author(s):  
PS Blackwell ◽  
J Blackwell

Two species of lumbricid, Aporrectodea caliginosa and Aporrectodea longa and a megascolecid, Eukerria saltenis were introduced, during the winter, to a duplex soil (transitional red-brown earth) ameliorated by either gypsum-enriched slots or beds formed after deep ripping and gypsum application. Some were introduced to areas enclosed by mesh within the slots, others were released in adjacent unenclosed areas. The enclosed areas had the equivalent of 0, 5 or 10 t ha-l of wheat straw on the surface, the unenclosed areas had 5 t ha-1. The enclosed areas were excavated in the spring, 17 weeks after earthworms were introduced. Proportionally more Eukerria adults were recovered than Aporrectodea adults (4040% compared with 10-30%). At 20-45 cm depth, Eukerria adults were four times more common than Aporrectodea. Cocoons and immature forms of Aporrectodea were very common, especially near the surface. Nine months after the introduction, even after a drier than average summer fallow, earthworms were still present. More Eukerria than Aporrectodea adults were found in the sample from the unenclosed areas. The smaller species, Eukerria, (about 1 mm diameter and 30 mm long) may be better adapted to survive in these ameliorated clay soils, but further research is needed. In the enclosed areas, soil macroporosity was unaffected by the 17 weeks with earthworms, but air permeability through the macropores was significantly increased, probably due to the burrows increasing vertical pore connectivity within 0 . 3 m depth.



Soil Research ◽  
1999 ◽  
Vol 37 (5) ◽  
pp. 831 ◽  
Author(s):  
G. H. Baker ◽  
P. J. Carter ◽  
V. J. Barrett

The relative abilities of 3 exotic lumbricid earthworms, the endogeic Aporrectodea caliginosa and A. trapezoides and the anecic A. longa, to bury surface-applied lime and help ameliorate soil acidity were measured in cages in 7 pasture soils in south-eastern Australia. All 3 species buried lime, mostly within the top 5 cm of the soil profile, but A. longa buried it deeper than A. caliginosa and A. trapezoides. A. longa significantly increased soil pH at 15–20 cm depth at some sites within 5 months (winter–spring, the earthworm ‘season’ in the Mediterranean climate of south-eastern Australia). Lime burial varied markedly between sites. These site differences were explained, at least in part, by variations in rainfall. Lime burial increased with earthworm density. A minimum density of 214 A. longa/m 2 was needed to significantly enhance lime burial within one season. Higher densities were required for the other two species. However, per unit of biomass, A. caliginosa and A. trapezoides were generally more able to bury lime in the upper soil layers (2 . 5–10 cm depth) than A. longa. Agricultural soils in south-eastern Australia are dominated by shallow burrowing species such as A. caliginosa and A. trapezoides. Deeper burrowers such as A. longa are rare. Introduction of A. longa to soils in high-rainfall regions of south-eastern Australia, where it does not presently occur, should enhance lime burial and help reduce soil acidity.



2020 ◽  
Vol 71 (1) ◽  
pp. 70
Author(s):  
Ruchika S. Perera ◽  
Brendan R. Cullen ◽  
Richard J. Eckard

The seasonal pattern of pasture production and its variability from year to year are important for pasture-based livestock production systems in south-eastern Australia because they influence key strategic decisions such as stocking rate and timing of the reproductive cycle. In this study, the effects of observed climate variations over the period 1960–2015 on pasture growth patterns were investigated by using a biophysical modelling approach. Pasture growth rates were simulated using DairyMod biophysical software at five sites ranging from high-rainfall, cool temperate at Elliott in Tasmania to medium-rainfall, warm temperate at Wagga Wagga in southern New South Wales. Annual pasture yields showed a small increasing rate of 50 kg DM/ha.year at Elliott and 40 kg DM/ha.year at Ellinbank (P < 0.05), whereas other sites showed no significant trend over time. A cross-site analysis of seasonal average pasture growth rates predicted under four different discrete periods of 14 years each showed that winter growth has increased steadily through time (P = 0.001), and spring pasture growth rate has decreased (P < 0.001) in 2002–15 compared with the earlier periods. Year-to-year pasture yield variability (coefficient of variation) during autumn and spring seasons has also increased (P < 0.05) across sites in the period 2002–15 compared with 1998–2001. At each site, the number of spring days with water stress (growth limiting factor_water <0.7) was ~10 times greater than the number of days with temperature stress (growth limiting factor_temperature <0.7). There was an increase in the number of days with water stress at Wagga Wagga, and increased heat stress at Wagga Wagga and Hamilton (P < 0.05) in the most recent period. These results highlight the importance of incorporating more heat-tolerant and deep-rooting cultivars into pasture-based production system. Although previous studies of climate-change impact have predicted increasing winter growth rates and a contraction of the spring growing season in the future (2030), this study provides clear evidence that these changes are already occurring under the observed climate in south-eastern Australia.



2006 ◽  
Vol 57 (10) ◽  
pp. 1045 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
S. J. Welham ◽  
M. K. Conyers ◽  
L. J. C. Castleman ◽  
...  

‘Managing Acid Soils Through Efficient Rotations (MASTER)’ is a long-term pasture–crop rotation experiment commenced in 1992. One of the objectives was to demonstrate the extent of crop, pasture, and animal responses to lime on a typical acidic soil in the 500–800 mm rainfall zone in south-eastern Australia. Two types of pastures (perennial v. annual pastures) with or without lime application were established in 1992. This paper presents the results of the pasture dry matter (DM) responses to lime application over 6 years from 1992 to 1997. Results showed that both perennial and annual pastures responded positively to lime on a highly acidic soil on the south-west slopes of New South Wales. Averaged across pasture types and 5 growing seasons, the limed pastures produced 18% more pasture DM (520 kg/ha, P < 0.05) than the unlimed pastures. Significant responses to lime were detected on perennial pastures (610 kg DM/ha, P < 0.05), but not on annual pastures, although the limed annual pastures produced more DM (420 kg/ha, P = 0.20) than the unlimed annual pastures. There was a large seasonal variation in pasture growth rate with the significant lime responses in winter and spring on both perennial pastures (P < 0.05) and annual pastures (P < 0.10 in winter and P < 0.05 in spring), but no responses in autumn and summer on either perennial or annual pastures. The extra growth in winter is of importance as winter is the period when feed is normally inadequate and limits stocking rates. It is recommended that perennial-based pastures should be promoted for the purposes of productivity, in terms of increasing pasture production and improving feed quality, and for the environmental benefits in terms of alleviating the soil acidity problem and reducing the risk of dryland salinity in the high-rainfall zone in south-eastern Australia.



2016 ◽  
Vol 56 (3) ◽  
pp. 417 ◽  
Author(s):  
Natalie A. Doran-Browne ◽  
John Ive ◽  
Phillip Graham ◽  
Richard J. Eckard

Ruminant livestock production generates higher levels of greenhouse gas emissions (GHGE) compared with other types of farming. Therefore, it is desirable to reduce or offset those emissions where possible. Although mitigation options exist that reduce ruminant GHGE through the use of feed management, flock structure or breeding management, these options only reduce the existing emissions by up to 30% whereas planting trees and subsequent carbon sequestration in trees and soil has the potential for livestock emissions to be offset in their entirety. Trees can introduce additional co-benefits that may increase production such as reduced salinity and therefore increased pasture production, shelter for animals or reduced erosion. Trees will also use more water and compete with pastures for water and light. Therefore, careful planning is required to locate trees where the co-benefits can be maximised instead of any negative trade-offs. This study analysed the carbon balance of a wool case study farm, Talaheni, in south-eastern Australia to determine if the farm was carbon neutral. The Australian National Greenhouse Gas Inventory was used to calculate GHGE and carbon stocks, with national emissions factors used where available, and otherwise figures from the IPCC methodology being used. Sources of GHGE were from livestock, energy and fuel, and carbon stocks were present in the trees and soil. The results showed that from when the farm was purchased in 1980–2012 the farm had sequestered 11 times more carbon dioxide equivalents (CO2e) in trees and soil than was produced by livestock and energy. Between 1980 and 2012 a total of 31 100 t CO2e were sequestered with 19 300 and 11 800 t CO2e in trees and soil, respectively, whereas farm emissions totalled 2800 t CO2e. There was a sufficient increase in soil carbon stocks alone to offset all GHGE at the study site. This study demonstrated that there are substantial gains to be made in soil carbon stocks where initial soils are eroded and degraded and there is the opportunity to increase soil carbon either through planting trees or introducing perennial pastures to store more carbon under pastures. Further research would be beneficial on the carbon-neutral potential of farms in more fertile, high-rainfall areas. These areas typically have higher stocking rates than the present study and would require higher levels of carbon stocks for the farm to be carbon neutral.



2013 ◽  
Vol 64 (1) ◽  
pp. 61 ◽  
Author(s):  
Matthew J. Bell ◽  
Richard J. Eckard ◽  
Matthew T. Harrison ◽  
James S. Neal ◽  
Brendan R. Cullen

Grazed pastures in south-eastern Australia are typically based on temperate (C3) species, such as perennial ryegrass (Lolium perenne). With predictions of warming to occur in this region, there has been growing interest in the performance of more heat-tolerant and deep-rooted subtropical (C4) pasture grasses, such as kikuyu (Pennisetum clandestinum). This study used an existing pasture model to estimate the production of kikuyu compared with the commonly used perennial ryegrass at seven sites in south-eastern Australia, using an historical baseline climate scenario between 1971 and 2010, and the daily temperature of the baseline scenario adjusted by +1, +2, and +3°C to represent potential warming in the future. The seven sites were chosen to represent the range of climatic zones and soil types in the region. First, the model predictions of monthly kikuyu dry matter (DM) production were validated with measured data at Taree, Camden, and Bega, with results showing good agreement. Second, pasture production (t DM/ha), metabolisable energy (ME, MJ/kg DM) content, and ME yield (GJ/ha) were predicted using the baseline and warmer climate scenarios. The study was based on 56 simulations of the factorial arrangement of seven sites × four temperature scenarios × two pastures. The month and annual ME yield of a kikuyu–subterranean clover (Trifolium subterraneum) pasture and a perennial ryegrass–subterranean clover pasture were compared. This study showed that in summer-dominant rainfall locations, where the average maximum temperature is >23°C, kikuyu was a more productive pasture species than perennial ryegrass. In winter-dominant rainfall locations during the warmer months of December–March, kikuyu can provide a useful source of ME when perennial ryegrass is less productive. With warming of up to 3°C at the winter-dominant rainfall sites, the average ME yield per year of kikuyu was predicted to surpass that of perennial ryegrass, but inter-annual variation in kikuyu production was higher. The nutritive value, seasonal distribution of growth, total annual production, and its variability are all important considerations for producers when selecting pasture species.





Sign in / Sign up

Export Citation Format

Share Document