Flowering of Stylosanthes guianensis in controlled temperatures under natural photoperiod

1984 ◽  
Vol 35 (2) ◽  
pp. 219 ◽  
Author(s):  
RL Ison ◽  
LR Humphreys

Seedlings of Stylosanthes guianensis var. guianensis cv. Cook and cv. Endeavour were grown in naturally lit glasshouses at Brisbane (lat. 27� 30' S.) at 35/30, 30/25 and 25/20�C (day/night), and were sown so as to emerge at 18-day intervals from 18 January to 11 June. Cook behaved as a long day-short day plant, with seedlings emerging after 5 February flowering incompletely or remaining vegetative until the experiment was terminated in mid-October. In the 25/20�C regimen flowering was incomplete in Cook; in Endeavour flowering was delayed but a conventional short-day response was observed. At 35/30�C Endeavour flowering was inhibited in the shortest days of mid-winter, suggesting a stenophotoperiodic response, but short days were confounded with low levels of irradiance. Minimum duration of the phase from emergence to floral initiation was c. 66-70 days in Cook and c. 40-45 days in Endeavour; the duration of the phase floral initiation to flower appearance was linearly and negatively related to temperature.

1988 ◽  
Vol 39 (2) ◽  
pp. 199 ◽  
Author(s):  
K Trongkongsin ◽  
LR Humphreys

Five 'tardio' selections of Stylosanthes guianensis ssp. guiunensis var. pauciflora and S. guiunensis var. guianensis cv. Cook were grown in a glasshouse where natural daylength was shortencd, or extended by incandescent lamps. They did not flower or flowered weakly in 152 cycles of 10 h short days (SD), but flowered more rapidly and prolifically if exposed to 30, 60 or 90 16 h long days (LD) followed by 30 10 h cycles than under natural daylength conditions at 27' 30' S. Increasing the previous exposure to LD reduced the number of 10 h cycles to floral initiation. Similar behaviour was exhibited by cv. Bandeirante which did not flower in 131 cycles of 11 h, but which flowered when SD induction followed 45 to 65 cycles of 14 h. Spike density was positively related to number of LD, which favoured first flower appearance on the terminal apices of lateral rather than of main shoots. CIAT 1283 and cv. Cook grown in controlled environment cabinets at 30�/23� (day/night) did not flower in 140 cycles of 10 h SD, but flowered if LD were interposed before SD induction. Cook had a greater LD requirement of 50 cycles of 14 or 15.5 h for floral initiation, whilst CIAT 1283 had a lesser LD requirement and flowered after 20 cycles of 14 or 15.5 h or after 50 cycles of 12.5 h. These data indicate a qualitative long-short day flowering response. This has implications which favour the higher latitudes for seed production and the early summer sowing of seed crops when plants would receive maximum LD exposure before SD induction occurs.


1973 ◽  
Vol 51 (3) ◽  
pp. 535-551 ◽  
Author(s):  
Marje Molder ◽  
John N. Owens

Plants of Cosmos bipinnatus Cav. ‘Sensation’ (a quantitative short-day plant) were grown under continuous conditions favorable or unfavorable for flowering, and some plants in each group were treated with gibberellic acid (GA3). Floral apices of Cosmos are formed by the transition of previously vegetative apices. The vegetative apex shows a cytohistological zonation pattern superimposed upon a tunica–corpus organization. The vegetative apex passes into an intermediate stage presumed typical of many plants held under non-inductive conditions. This stage is marked by many cytological features characteristic of both reproductive and vegetative apices but leaves continue to be produced. The presence of the intermediate stage accounts for conflicting results obtained in physiological studies since there is great variation in response rate depending on age of plant and the stage of the apex at the start of an experiment. This stage is followed by a typical transitional stage marked by an increase in RNA content, increased mitotic activity, and a change in zonation. Elongation of the apex and internodes occurs followed by initiation of the involucral bracts and floret primordia, marking the beginning of the prefloral and inflorescence stages respectively.GA3 specifically induces Cosmos to flower under non-inductive conditions thereby influencing floral initiation in a facultative short-day plant. Microscopic examination of the rate of apical transition revealed that GA3 substituted effectively for short days but was not as efficient an inducer as were short days.


HortScience ◽  
1991 ◽  
Vol 26 (6) ◽  
pp. 719A-719
Author(s):  
Richard L. Harkess ◽  
Robert E. Lyons

A study was undertaken to determine the rate of floral initiation in Rudbeckia hirta. R. hirta plants were grown to maturity, 14-16 leaves, under short days (SD). Paired controls were established by placing half of the plants under long days (LD) with the remainder left under SD. Beginning at the start of LD (day 0), five plants were harvested daily from each photoperiod group for twenty days. Harvested meristems were fixed in 2% paraformaldehyde - 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.0) for 24 hrs, dehydrated in an ethanol series, embedded in paraffin and sectioned at 8 μm. Serial sections were stained with Methyl-green Pyronin, with adjacent sections treated with RNase for nucleic acid comparison. All events of floral initiation were identified, The results of limited inductive photoperiod indicate that 16-18 LD were required for flowering.


2003 ◽  
Vol 285 (4) ◽  
pp. R873-R879 ◽  
Author(s):  
Gregory E. Demas ◽  
Timothy J. Bartness ◽  
Randy J. Nelson ◽  
Deborah L. Drazen

Siberian hamsters ( Phodopus sungorus) rely on photoperiod to coordinate seasonally appropriate changes in physiology, including immune function. Immunity is regulated, in part, by the sympathetic nervous system (SNS), although the precise role of the SNS in regulating photoperiodic changes in immunity remains unspecified. The goal of the present study was to examine the contributions of norepinephrine (NE), the predominant neurotransmitter of the SNS, to photoperiodic changes in lymphocyte proliferation. In experiment 1, animals were maintained in long [16:8-h light-dark cycle (16:8 LD)] or short days (8:16 LD) for 10 wk, and splenic NE content was determined. In experiment 2, in vitro splenocyte proliferation in response to mitogenic stimulation (concanavalin A) was assessed in spleen cell suspensions taken from long- or short-day hamsters in which varying concentrations of NE were added to the cultures. In experiment 3, splenocyte proliferation was examined in the presence of NE and selective α- and β-noradrenergic receptor antagonists (phenoxybenzamine and propranolol, respectively) in vitro. Short-day animals had increased splenic NE content compared with long-day animals. Long-day animals had higher proliferation compared with short-day animals independent of NE. NE (1 μM) further suppressed splenocyte proliferation in short but not long days. Last, NE-induced suppression of proliferation in short-day hamsters was blocked by propranolol but not phenoxybenzamine. The present results suggest that NE plays a role in photoperiodic changes in lymphocyte proliferation. Additionally, the data suggest that the effects of NE on proliferation are specific to activation of β-adrenergic receptors located on splenic tissue. Collectively, these results provide further support that photoperiodic changes in immunity are influenced by changes in SNS activity.


1983 ◽  
Vol 10 (2) ◽  
pp. 59-62 ◽  
Author(s):  
H. T. Stalker ◽  
J. C. Wynne

Abstract Many Arachis species collections do not produce pegs in North Carolina even though they flower profusely. To investigate reasons for the failure of fruiting, nine wild peanut species of section Arachis and three A. hypogaea cultivars representing spanish, valencia and virginia types were evaluated for response to short and long-day treatments in the North Carolina State Phytotron Unit of the Southeastern Environmental Laboratories. The objective of this investigation was to determine the flowering and fruiting responses of Arachis species to short and long-day photoperiods. Plant collections grown under a 9-hour short-day treatment were generally less vigorous, but produced more pegs than corresponding plants grown in long-day treatments which were produced by 9 hours of light plus a 3-hour interruption of the dark period. Annual species produced significantly more flowers and pegs than perennial species during both long and short days. The total number of flowers produced ranged from 0 during short days for A. correntina to more than 300 for A. cardenasii in long-day treatments. Only one plant of each species A. chacoense and A. villosa, and no plants of A. correntina, flowered in short days. Total numbers of pegs produced in short-day treatments were generally greater than in long-day treatments and the ratio of total number of pegs/total number of flowers was consistently greater during short-day treatments. A general trend was observed for more flowers produced in long-day treatments, but more pegs produced in short days. This study indicated that photoperiod can be manipulated to increase the seed set of some species and the success rate of obtaining certain interspecific hybrids. Furthermore, introgression from wild to cultivated species may possibly alter the reproductive capacity of A. hypogaea to photoperiod.


1987 ◽  
Vol 14 (3) ◽  
pp. 277 ◽  
Author(s):  
LT Evans

Experiments in the Canberra phytotron with several European winter wheat varieties, especially cv. Templar, have shown that their need for vernalisation at low temperature can be replaced entirely by growth in short days at 21/16°C for the same period. In fact, although wheat is usually classified as a long day plant, inflorescence initiation at 21/16°C in unvernalised plants was twice as rapid in 8 h photoperiods as in 16 h ones. Short day induction was fastest in photoperiods of less than 12 h and was relatively insensitive to irradiance. Inflorescence development following initiation was faster the longer the photoperiod. At high irradiance, anthesis eventually occurred in 8 h days, but not at lower irradiance. These wheats are therefore short-long day plants, and may appear to be indifferent to daylength if only their time to anthesis is observed. Although short days can replace low temperatures, there are several important differences in their modes of action, and short day induction is better not referred to as short day vernalisation. Vernalisation of developing grains in the ear was more effective in long days.


1960 ◽  
Vol 13 (4) ◽  
pp. 429 ◽  
Author(s):  
LT Evans

Plants of Lolium temulentum, raised in short days, were given an inductive treatment by exposure of one leaf blade to a 32-hr period of continuous illumination. Then either the leaf exposed to this one long light period or varying areas of lower leaves which were simultaneously in short-day conditions were removed at intervals after the long-day exposure. The longer the long-day leaves remained on the plants, the greater was the proportion of plants which initiated inflorescences and the greater the rate of development of their inflorescences. This was so even when short-day leaves were present above the long-day ones. The longer the short-day leaves remained, and the greater their area, the lower was the proportion of plants which initiated inflorescences.


2004 ◽  
Vol 84 (2) ◽  
pp. 477-486 ◽  
Author(s):  
B. H. Paynter ◽  
P. E. Juskiw ◽  
J. H. Helm

To gain an understanding of the adaptation of Australian and Canadian barley (Hordeum vulgare L.) cultivars to the environments of western Canada and Western Australia, phyllochron and number of leaves on the mainstem in eight cultivars of two-row, spring barley were examined when sown at two dates in two locations. The locations were a short-day environment at Northam, Western Australia, Australia in 1997 and a long-day environment at Lacombe, Alberta, Canada in 1998. At each location highly significant relationships between leaf number on the mainstem and thermal time were found (r2 > 0.94). Using linear estimates, the phyllochron of barley under short days was longer than under long days and was correlated to time to awn emergence. Later sowing shortened phyllochron under short days, but generally not under long days. Error messages from the linear regression analysis suggested that residuals were not random for all cultivars. Bilinear models were fitted to those datasets. Bilineal responses were observed under both short and long days, being independent of cultivar, date of seeding, final leaf number, phenological development pattern and time to awn emergence. The occurrence of a bilinear response was also independent of any ontogenetic events. The change in phyllochron occurred between leaves 4–7 at Northam and between leaves 6–9 at Lacombe. The leaf number at which the phyllochron change occurred was positively related to final leaf number and time to awn emergence. The phyllochron of early forming leaves was positively related to time to awn emergence and shorter than later forming leaves. Leaf emergence patterns in spring barley under both long-day and short-day conditions may therefore be linear or bilinear. Key words: barley (spring), Hordeum vulgare L., phyllochron, leaf emergence, daylength


1965 ◽  
Vol 16 (5) ◽  
pp. 767
Author(s):  
Mannetje L t

S. humilis H.B.K., S. guyanensis (Aubl.) Sw. subsp, guyanensis, S. mucronata Willd., and S. montevidensis Vog. were subjected to photoperiods of 8,10,12, and 14 hr in the CSIRO Phytotron in Canberra. S. guyanensis and S. humilis appeared to be short-day plants and S,.montevidensis a long-day plant for flowering. S. mucronata showed a rather indefinite response, but appeared to flower more rapidly under short days than under long days. Under photoperiods of 8 and 10 hr, S. humilis had a prostrate habit and S. montevidensis plants were stunted, while under photoperiods of 12 and 14 hr both species grew erect. S. guyanensis and S. mucronata showed no differences in growth habit with photoperiod. Dry matter yields for the 12 and 14 hr photoperiods were significantly larger than those for the 8 and 10 hr photoperiods for all species except S. mucronata, which gave a significantly higher yield only under the 14 hr photoperiod.


Sign in / Sign up

Export Citation Format

Share Document