The effect of boron supply on the growth and seed production of subterranean clover (Trifolium subterraneum L.)

1987 ◽  
Vol 38 (3) ◽  
pp. 537 ◽  
Author(s):  
BS Dear ◽  
J Lipsett

There has been little research on the boron (B) status of subterranean clover, despite strong indications of deficiency of B in southern Australia where clover decline has been reported. This paper describes glasshouse experiments to vary the level of B supply to clover grown on soils low in B. On a soil farmed in a cereal clover rotation, herbage yields of clover increased by 25% with applied B, but seed yields, negligible without B, increased 21-fold. On two other acid soils, from pastures, there were also large responses to B in seed yield (1.5- and 5.1-fold respectively); liming increased the responses (8- and 55.2-fold). However, herbage production was less responsive to B (25% and 1.7-fold with liming); on the unlimed soils, application of B depressed yield (- 1 and -21%). This is attributed to there being enough B to sustain herbage growth, but inadequate for seed formation. These results show that herbage yield, conventionally employed in the past, is not a satisfactory index of B status for total performance in subterranean clover. The response to B in seed yield was associated with increases in: numbers of seed set (75% to 22.6-fold, depending on the particular combination of soil and liming); size of seed (10% to 1.2-fold); proportion of buried seed (20%-70%). It is suggested that these favour establishment and persistence of clover and that clover decline may well involve deficiency of B. It was shown that concentration of B in the plant does not necessarily relate predictably to yield of herbage and that reduction in seed yield may not be heralded by foliar symptoms, since seed requirement exceeds that of herbage.

1973 ◽  
Vol 24 (6) ◽  
pp. 839 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

In a glasshouse experiment subterranean clover plants were grown in soil at various levels of calcium nutrition. The developing burs were buried in separate soil containers to which no nutrients, calcium sulphate, calcium carbonate, or potassium sulphate were applied. When subterranean clover was growing in soil low in calcium, top yield was little affected; but bur and seed formation were greatly reduced. However, when the reflexed flowers were buried in soil to which a calcium salt had been added, bur and seed yield increases of up to 500% were obtained The increase in seed yield resulted from a greater percentage of flowers forming bur, more seed per bur, heavier seed, and less rotten seed. Similar results were obtained in a second glasshouse experiment in which a different soil was used to grow the clover. The beneficial effect of calcium ions around the developing bur was independent of the associated anions, or of the soil pH; nor could it be produced by the substitution of potassium or magnesium for calcium. It seems likely that commercial seed yields and subterranean clover persistence in many areas may be reduced by calcium deficiency in apparently lush healthy pastures. The similarity of this disorder to calcium deficiency in peanuts suggests that other crop and pasture species forming buried seed may also be especially susceptible.


2008 ◽  
Vol 48 (8) ◽  
pp. 1133 ◽  
Author(s):  
B. S. Dear ◽  
B. F. Hackney ◽  
G. M. Dyce ◽  
C. A. Rodham

Swards of four cultivars of subterranean clover (Trifolium subterraneum L.) were cut at three different times to determine the effect on forage yield and quality, seed set and seedling regeneration in two successive seasons in southern New South Wales. The four cultivars of subterranean clover (Seaton Park LF, Junee, Goulburn and Clare) were cut on 23–25 September (early cut), 8–10 October (mid cut) or 22–23 October (late cut), to simulate an early silage, late silage or hay cut. Additional treatments imposed included either grazing or leaving the regrowth after cutting and raising the cutting height from 3 to 6 cm. Forage yields ranged from 3.5 to 9.3 t dry matter (DM)/ha in the first year and from 2.0 to 5.9 t DM/ha in the second year. Herbage yield was influenced by both cultivar and harvest time with the highest yields achieved with the mid cut. Lower forage yields at the later cut were attributed to losses due to respiration and decay under dense leaf canopies. Changes in forage quality were consistent across both years, with in vivo DM digestibility declining from 76–79% to 69–70% as cutting time was delayed. Crude protein fell from 22–24% to 14–17% over the same period, depending on cultivar. Seed yields in both years were influenced by both cutting time and cultivar with a positive relationship (R2 = 0.45–0.61) between herbage present in late spring after a period of regrowth and subsequent seed yield. The early flowering cultivar Seaton Park LF had the highest seed yield in both years and the more erect cultivar Clare had the lowest. Seed yields declined with later cutting time but increased by an average of 39% when the cutting height was raised from 3 to 6 cm. Seedling regeneration reflected seed yield responses with the largest seedling regeneration occurring in treatments cut early. The study found that forage conservation in early October is likely to yield more and be of higher quality than swards cut later in the season. Seed set is greatly reduced by all cutting strategies to levels unprofitable for seed harvesting but may be adequate for pasture regeneration.


1974 ◽  
Vol 14 (71) ◽  
pp. 749 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

The effects of four common fertilizers containing calcium on seed production in subterranean clover (Trifolium subterraneum) were measured at six locations over five years in a total of fifteen field experiments. Calcium as a sulphate, carbonate or phosphate salt was applied to subterranean clover pastures either at the start of the growing season (autumn) or at flowering (spring). Gypsum, plaster of Paris, or lime gave large increases in seed yield per unit area and also per unit weight of tops. Spring applications of superphosphate increased seed yields in only two out of four experiments. Gypsum applied in spring at 200-500 kg ha-1 was as effective as 2,000 kg ha-1 of lime applied in autumn. Applications of lime in spring were much less effective. Increased seed yields were due to increases in burr yield, seed number per burr, and mean weight per seed. They were usually accompanied by increases in calcium concentration in the seed. Responses in seed production to calcium applications were obtained in all three sub-species of Trifolium subterraneum. In two experiments, newly sown on a soil type on which subterranean clover regeneration and persistence is commonly very poor, applied calcium doubled or quadrupled seed set. In 13 experiments using soils on which subterranean clover had persisted as the major component of the pasture for several years, calcium in the year of application increased the total seed bank by 6 to 31 per cent, and the current seed set by a greater amount.


1967 ◽  
Vol 7 (24) ◽  
pp. 25 ◽  
Author(s):  
GB Taylor ◽  
RC Rossiter

Seed production and persistence of the Carnamah, Northam A, Dwalganup, and Geraldton strains of subterranean clover (Trifolium subterraneum L.) were examined in undefoliated swards in the wheatbelt of Western Australia. The early flowering characteristic of Carnamah was not always associated with higher seed yields. Only when there was a well-defined, early finish to the growing season, or when flowering was very much earlier in Carnamah (viz., following an early 'break' to the season), did this strain clearly outyield both Northam A and Geraldton. The seed yield of Dwalganup was generally inferior to that of the other strains. Factors affecting regeneration are discussed. Under low rainfall conditions, poorer germination-regulation of Carnamah, compared with Geraldton and Northam A, would be expected to result in poorer persistence unless offset by higher seed yields in the Carnamah strain.


1985 ◽  
Vol 25 (4) ◽  
pp. 893 ◽  
Author(s):  
MDA Bolland

Most of the sandy soils near Esperance, W.A., were cleared of native vegetation and sown to subterranean clover in the 1950s and 1960s. Over the past 20-30 years, pH values of the topsoil (1:5, soil: water) have decreased from 6.5-7.0 to 5.0-5.5. The application of 2 t/ha of agricultural lime increased the soil pH (1:5, 0.01 CaCl2) from 5.5 to 5.8, from 4.9 to 5.6, and from 5.1 to 5.5 at three sites that had been sown to subterranean clover for 10, 20 and 40 years respectively. However, lime had no effect on either dry matter production or seed yield of subterranean clover. Additions of calcium in a further experiment also did not affect the seed yield of subterranean clover. Irrespective of the lime treatments, the addition of nutrients (phosphorus, potassium, sulfur, copper, zinc, molybdenum, cobalt, manganese and boron) significantly (P<0.05) improved dry herbage yields by a factor of 1.3, 1.7 and 1.4 at the 10-, 20- and 40-year-old sites. However, the addition of nutrients did not affect seed yields of subterranean clover. In other experiments, the omission of sulfur, potassium and, for the deepest sandy site, phosphorus reduced dry herbage yields by between 10-30%. The omission of molybdenum from treatments of the 20- and 40-year-old pasture reduced herbage yields by 21 and 16% respectively. However, omission of molybdenum in the experiment sited on the 10-year-old pasture did not affect yields. Thus, as the acidification of the sandplain soils continues, molybdenum may become deficient and may limit herbage yields of subterranean clover.


Author(s):  
M.L. Smetham ◽  
D.W. Jack ◽  
Sandy E.H. Hammond

Fifteen accessions and 3 cultivars of subterranean exnected for this site. It is concluded that lateclover (Trifolium subterranean L.) were sown in autumn in shallow stony soil south of Christchurch, New Zealand. The following growing season was atypical, with drought occurring briefly but one month earlier than usual, the rest of the season being wetter than usual. Contrary to previous results highest seed yields were given by mid- to lateseason flowering lines. Early flowering lines were severely disadvantaged by the early drought, resulting in seed yields of only 20-25 kg/ha. High seed yields were linked with the ability of lines to recommence flowering after drought and continue this for a prolonged period. Two late flowering accessions, 014454B and 014205B, yielded more than 200 kg/ha seed, outyielding the late flowering cv. Tallarook in spite of this cultivar having the same ability as the other two to reflower. Six highseed yielding lines gave naturally regenerated seedling numbers near to or exceeding 1000/m2. Apparent hardseededness at the time of autumn germination averaged 49% which was lower than expected for this site. It is concluded that late fldwering lines of subterranean clover should always be included in mixtures of this species for pasture to ensure adequate regeneration in wetter than normal seasons. Keywords: accessions, cultivars, flowering, hardseededness, regeneration, seed production, Trifolium subterraneum


1971 ◽  
Vol 11 (49) ◽  
pp. 202 ◽  
Author(s):  
WR Scott

Six cultivars of subterranean clover, Geraldton, Yarloop, Woogenellup, Clare, Mount Barker, and Tallarook, were grown as ungrazed swards at 1,700 feet a.s.1. in the Mackenzie Country of South Canterbury, New Zealand. In this very frosty environment seed yields tended to increase with increasing lateness of flowering although Clare and perhaps Tallarook appeared to be more frost susceptible than the other cultivars. It is suggested that the deleterious effects of frosts in reducing the seed yields of subterranean clover may have been overemphasized in the past and that the trend for seed yields to increase with increasing lateness of flowering can be partially explained by differences in runner production.


1995 ◽  
Vol 35 (4) ◽  
pp. 475 ◽  
Author(s):  
GA Sandral ◽  
BS Dear ◽  
NE Coombes

The effect of broadleaf herbicides on seed set by Trifolium subterraneum (subterranean clover) cultivars was examined at 2 sites (Wagga Wagga and Canowindra) over 2 years. Five commonly used herbicide treatments (bromoxynil, MCPA, 2,4-DB, MCPA + terbutryn, MCPA + diuron) were applied at 2 rates to 7 cultivars of subterranean clover. Significant site x cultivar x herbicide interactions were observed. Seed yields were either unaffected or depressed by up to 66% at the higher rainfall site (Canowindra), whereas at the lower rainfall site (Wagga Wagga) some herbicide x cultivar combinations showed increases in seed yield up to 115%. The increase in seed yield was greater at the lower herbicide rate. The variation in seed yield with herbicide treatment was largely a result of a change (P<0.001) in the number of seeds set (R = 0.94 at Wagga Wagga; R = 0.85 at Canowindra). Seed size was also correlated (P<0.001) with seed yield at both sites but explained less of the variation (R = 0.23 at Wagga Wagga; R = 0.47 at Canowindra). The reduction in herbage yield as a result of herbicide application was a poor indicator of the subsequent seed yield response at both sites. Cultivar Trikkala was consistently most tolerant to the herbicide treatments, showing either no change in seed yield at the wetter site or large increases in seed yield at the lower rainfall site. In contrast, the seed yield of Dalkeith was depressed by 2,4-DB at both sites in both years by 39-66%. Increases in seed yield, which were most pronounced in cultivars of midseason maturity (Trikkala, Junee, Seaton Park) and least in later maturing cultivars (Karridale, Clare) and in the very early flowering Dalkeith, were attributed in part to a water-saving effect of the herbicide treatments. Cultivar maturity ranking was negatively correlated (P<0.001) with seed yield (R=-0.73 at Wagga Wagga; R=-0.45 at Canowindra). The germination percentage of seed produced by the cultivars was unaffected by herbicide treatment, although the number of abnormal radicles formed by germinating seed was higher in the 2,4-DB and MCPA treatments.


1992 ◽  
Vol 32 (8) ◽  
pp. 1095 ◽  
Author(s):  
BS Dear ◽  
DJ Conlan ◽  
MF Richards ◽  
NE Coombes

The tolerance of 6 cultivars of Trifolium subterraneum (subterranean clover) to simazine applied at 0.63 and 1.25 kg a.i./ha was determined under weedfree conditions in the field by measuring herbage and seed yields. Large herbage yield losses occurred as a result of the simazine in spring in the 2 years of the experiments. In 1989, spring herbage yield losses of the cultivars at the 0.63 and 1.25 kg/ha simazine rates averaged 56 and 82%, respectively. In 1990 the spring herbage yield losses were 27 and 51%. Significant variation in tolerance was observed between cultivars in both years, with Trikkala being the most tolerant and Karridale the most susceptible cultivar. Rate of herbicide had the greatest effect on herbage yield, with cultivar having a smaller effect. In 1989, with relatively favourable spring conditions, clover seed yields were depressed by simazine, but in 1990 when drier conditions prevailed during flowering and seed set, seed yields were unaffected or slightly increased by simazine in all cultivars except the early-flowering cultivar Dalkeith. Seed yields of simazine-treated swards were 196-1480 kg/ha in 1989 and 359-686 kg/ha in 1990. The seed yield response in 1990 suggests that herbicides which retard growth in winter help to conserve soil water and, therefore, may benefit seed filling later in the season. The presence of Lolium rigidum at spraying did not reduce the effect of the herbicide on clover herbage yield and had no effect on seed set. Although simazine may reduce herbage yields and, in some cases, seed yields, its use may be justified for the control of annual grasses when other factors such as disease control, pasture quality, and level of weed competition are considered.


1999 ◽  
Vol 39 (7) ◽  
pp. 839 ◽  
Author(s):  
B. S. Dear ◽  
G. A. Sandral

Summary. The effect of the herbicides pyridate, imazethapyr and a bromoxynil + diflufenican mixture on subterranean clover (Trifolium subterraneum L.) (cvv. Trikkala and Karridale) and lucerne (Medicago sativa L.) (cv. Aurora) seedlings was examined in randomised plot field experiments in 2 successive years. Responses were compared against an unsprayed control and a standard bromoxynil application. The herbicides and the rates of product applied were: bromoxynil + diflufenican (0.5, 1.0 L/ha), imazethapyr (0.18, 0.3 L/ha), pyridate (1.0, 3.0 L/ha), and bromoxynil (1.4 L/ha). Weeds were removed by hand from the subterranean clover experiments but not the lucerne experiments. Pyridate and imazethapyr were the least phytotoxic of the herbicides applied on both subterranean clover and lucerne. The bromoxynil + diflufenican mixture was the most phytotoxic, causing severe leaf burn and a depression in herbage biomass in both species. Despite the high level of phytotoxicity by some treatments, none of the herbicides reduced lucerne seedling numbers. Lucerne herbage yields in late spring were higher in most sprayed plots compared with the unsprayed control due to the removal of weed competition. Seed yield responses in subterranean clover due to herbicide application ranged from negative responses up to –21% with pyridate to positive responses up to 92% with the bromoxynil + diflufenican treatment relative to the weed-free, unsprayed control. The positive responses were attributed to increased availability of soil water during seed set in treatments in which herbicides suppressed legume biomass. There was a good correlation in both 1992 (R2 = 0.85–0.89) and 1993 (R2 = 0.63–0.73) between the depression in herbage yield in spring and the increase in seed set relative to the control. Soil water under the subterranean clover cultivar Karridale in spring was highest in the bromoxynil and imazethapyr treatments, which produced a large reduction in biomass, and lowest in the control and pyridate treatments, which had showed the least depression in biomass 60 days after treatment application. Although some herbicides cause a high level of phytotoxicity, their use in weedy subterranean clover–lucerne mixtures is justified in view of the small negative, and potentially large positive, effects on subterranean clover seed yield and the increased lucerne yields later in the season due to weed suppression.


Sign in / Sign up

Export Citation Format

Share Document