scholarly journals Effeots of High Temperature and Genotype on the Growth of Excised Roots of Arabidopsis Thaliana

1968 ◽  
Vol 21 (2) ◽  
pp. 217 ◽  
Author(s):  
TF Neales

The effects of a high temperature (31'5�C), and the addition of vitamins (thiamine plus biotin) on the growth of excised roots of four clones of A. thaliana derived from the strains EST, Pi, BLA, and 1018/6 are described. Growth response of the roots to these treatments was different from that of the whole plant of the same strain. The vitamin requirement of the roots of strain 1018/6 was greater at 31� 5�C than at 27�C.

Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582097924
Author(s):  
Darya Babina ◽  
Marina Podobed ◽  
Ekaterina Bondarenko ◽  
Elizaveta Kazakova ◽  
Sofia Bitarishvili ◽  
...  

Plant growth response to γ-irradiation includes stimulating or inhibitory effects depending on plant species, dose applied, stage of ontogeny and other factors. Previous studies showed that responses to irradiation could depend on ABA accumulation and signaling. To elucidate the role of ABA in growth and photosynthetic responses to irradiation, lines Col-8, abi3-8 and aba3 -1 of Arabidopsis thaliana were used. Seeds were γ-irradiated using 60Co in the dose range 50-150 Gy. It was revealed that the dose of 150 Gy affected germination parameters of aba3 -1 and Col-8 lines, while abi3-8 line was the most resistant to the studied doses and even showed faster germination at early hours after γ-irradiation at 50 Gy. These results suggest that susceptibility to ABA is probably more important for growth response to γ-irradiation than ABA synthesis. The photosynthetic functioning of 16-day-old plants mainly was not disturbed by γ-irradiation of seeds, and no indication of photosystem II photoinhibition was noticed, revealing the robustness of the photosynthetic system of A. thaliana. Glutathione peroxidase activity and ABA concentrations in plant tissues were not affected in the studied dose range. These results contribute to the understanding of germination and photosynthesis fine-tuning and of mechanisms of plant tolerance to ionizing radiation.


2013 ◽  
Vol 765-767 ◽  
pp. 2971-2975 ◽  
Author(s):  
Xue Gong ◽  
Ming Li Liu ◽  
Li Jun Zhang ◽  
Wei Liu ◽  
Che Wang

Sucrose transporters (SUCs or SUTs) are considered as the important carriers and responsible for the loading, unloading and distribution of sucrose, but at present there is no report that SUCs are involved in sucrose distribution and metabolism under drought stress at the whole-plant level. AtSUC4, as the unique member of SUT4-clade inArabidopsis thaliana, may be important for plant stress tolerance. Here, by analyzing two homozygous mutation lines ofAtSUC4(Atsuc4-1andAtsuc4-2), we found drought stress induced higher sucrose, lower fructose and glucose contents in shoots, and lower sucrose, higher fructose and glucose contents in roots of these mutants compared with the wild-type (WT), leading to an imbalance of sucrose distribution, fructose and glucose (sucrose metabolites) accumulation changes at the whole-plant level. Thus we believe thatAtSUC4regulates sucrose distribution and metabolism in response to drought stress.


Author(s):  
Laetitia Poidevin ◽  
Javier Forment ◽  
Dilek Unal ◽  
Alejandro Ferrando

ABSTRACTPlant reproduction is one key biological process very sensitive to heat stress and, as a consequence, enhanced global warming poses serious threats to food security worldwide. In this work we have used a high-resolution ribosome profiling technology to study how heat affects both the transcriptome and the translatome of Arabidopsis thaliana pollen germinated in vitro. Overall, a high correlation between transcriptional and translational responses to high temperature was found, but specific regulations at the translational level were also present. We show that bona fide heat shock genes are induced by high temperature indicating that in vitro germinated pollen is a suitable system to understand the molecular basis of heat responses. Concurrently heat induced significant down-regulation of key membrane transporters required for pollen tube growth, thus uncovering heat-sensitive targets. We also found that a large subset of the heat-repressed transporters is specifically up-regulated, in a coordinated manner, with canonical heat-shock genes in pollen tubes grown in vitro and semi in vivo, based on published transcriptomes from Arabidopsis thaliana. Ribosome footprints were also detected in gene sequences annotated as non-coding, highlighting the potential for novel translatable genes and translational dynamics.


1959 ◽  
Vol 12 (2) ◽  
pp. 117 ◽  
Author(s):  
J Langridge ◽  
B Griffing

The composite hypothesis under test is that (i) at certain temperature extremes plant growth is depressed by the inactivation of one or a few especially sensitive reactions, and (ii) such growth depression may be prevented by providing the plant with the normal products of the inhibited reactions. Appropriate experimental designs and statistical criteria to test this hypothesis are formulated.


Author(s):  
Zhe Pu ◽  
Jielu Wang ◽  
Bin Ren ◽  
Pan Song ◽  
Fan Zhao

Abstract Industrial production is accompanied by a large number of physical and chemical reactions. Steam, whose heat was often used to carry out various production activities, is a common medium in industrial production. Steam pipeline has the characteristics of high temperature and high pressure. The pipeline has been in service at high temperature for a long time, which is prone to metal material degradation such as graphitization and spheroidization. Cause of the expansion of steam pipeline after heating, the natural compensation structure is generally adopted in the whole plant pipe gallery. In recent years, the accidents of steam pipeline occurred frequently, so we must pay more attention to the safety of steam pipeline. Periodic Inspection Regulation for Industrial Pressure Piping (TSG D7005-2018) explicitly requires stress analysis and checking in some cases to determine the safety of the pipeline. The traditional inspection method adopts a random sampling model which has the risk of over inspection and missing inspection. Taking a whole plant steam pipeline as an example, this paper introduced the stress check criterion of pipeline in ASMEB31.3.The model of the pipeline was established by the software, and the stress state and displacement of each node of the pipeline were calculated. According to the calculation results, a targeted inspection scheme was established and effective data support was provided for the regular inspection of steam pipeline.


2019 ◽  
Vol 70 (20) ◽  
pp. 5745-5751 ◽  
Author(s):  
Masaya Yamamoto ◽  
Kenji Nishimura ◽  
Hiroyasu Kitashiba ◽  
Wataru Sakamoto ◽  
Takeshi Nishio

High temperature disrupts the targeting of SRK to the plasma membrane, resulting in breakdown of the stigmatic self-incompatibility response in self-incompatible Arabidopsis transformants.


Sign in / Sign up

Export Citation Format

Share Document