scholarly journals Changes in Fine Structure of Root Cells from Maize Seedlings Exposed to Water Stress

1970 ◽  
Vol 23 (2) ◽  
pp. 489 ◽  
Author(s):  
I Nir ◽  
S Klein ◽  
Alexandra Poljakoff-Mayber

As previously reported (Nir et al. 1969) changes in the ultrastructure of meristematic cells were induced by exposure of detached maize root tips to water stress. The question remained whether similar fine structure changes would be induced if instead of isolated root tips, the whole seedlings were exposed to water stress. Since knowledge of the behaviour of intact seedlings is important for the understanding of drought physiology, we investigated the changes which occur in the fine structure of root cells when whole seedlings are exposed to drought.

1959 ◽  
Vol 5 (3) ◽  
pp. 501-506 ◽  
Author(s):  
W. Gordon Whaley ◽  
Hilton H. Mollenhauer ◽  
Joyce E. Kephart

Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.


Author(s):  
H. H. Mollenhauer ◽  
D. J. Morrè

Seedlings of maize (Zea mays L.) var. WF-9 X M-14 were exposed to cytochalasin B for 1/2, 1, and 2 hr at concentrations of 0, 10, and 100 ppm. The root tips were then fixed for electron microscopy and the epidermal and outer cap cells examined for changes in dictyosome form, intercisternal fibers or secretory vesicles.Cytochalasin B did not cause significant changes in dictyosome form (Fig. 1) or intercisternal fibers. However, it did induce alterations in the distribution patterns of Golgi apparatus-derived secretory vesicles.In epidermal and outer cap cells of the maize root, following cytochalasin B treatment, secretory vesicles accumulated within the central portions of the cytoplasm in those regions occupied by Golgi apparatus (Fig. 2, 3). Cytoplasmic regions along the cell surface were devoid of secretory vesicles, and very few vesicles were found at the cell surface (Fig. 2, 3). We interpret these findings to mean that secretory vesicles formed by the Golgi apparatus did not move to the cell surface, but accumulated at or near their sites of origin following treatment with cytochalasin B.


1988 ◽  
Vol 252 (2) ◽  
pp. 401-408 ◽  
Author(s):  
C Roby ◽  
R Bligny ◽  
R Douce ◽  
S I Tu ◽  
P E Pfeffer

Movement of paramagnetic Mn2+ into sycamore (Acer pseudoplatanus) cells has been indirectly examined by observing the line broadening exhibited in its 31P n.m.r. spectra. Mn2+ was observed to pass into the vacuole, while exhibiting a very minor accumulation in the cytoplasm. With time, gradual leakage of phosphate from the vacuole to the cytoplasm was observed along with an increase in glucose-6-phosphate. Anoxia did not appear to affect the relative distribution of Mn2+ in the cytoplasm and vacuole. Under hypoxic conditions restriction of almost all movement of Mn2+ across the plasmalemma as well as the tonoplast was observed. In contrast, maize root tips showed entry and complete complexation of nucleotide triphosphate by Mn2+ during hypoxia. The rate of passage of Mn2+ across the tonoplast in both sycamore and maize root cells is approximately the same. However, the rates of facilitated movement across the respective plasma membranes appear to differ. More rapid movement of Mn2+ across the plasmalemma in maize root tip cells allows a gradual build-up of metal ion in the cytoplasm prior to its diffusion across the tonoplast. Sycamore cells undergo a slower uptake of Mn2+ into their cytoplasms (comparable with the rate of diffusion through the tonoplast), so little or no observable accumulation of Mn2+ is observed in this compartment.


1979 ◽  
Vol 40 (1) ◽  
pp. 235-244
Author(s):  
J.R. Green ◽  
D.H. Northcote

There are two fucosyl transferase activities present within the endomembranes of the cells of maize root-tips. One transfers fucose to polyprenyl phosphate and occurs in the endoplasmic reticulum, the second transfers fucose probably to polysaccharide or glycoprotein. In order to show an association of this second fucosyl transferase activity with the endoplasmic reticulum as well as the Golgi apparatus, a method of fractionating the membranes in a discontinuous sucrose gradient was used. Membranes were prepared in the presence of Mg2+, which maintained the attachment of ribosomes to the endoplasmic reticulum, and also in the presence of EDTA, which removed most of the ribosome complex. This caused a shift in density of these membranes. Two types of experiments were carried out; either maize roots were incubated in L-[1-3H]fucose and then membranes prepared and the amount of polymer synthesized in vivo determined or isolated membranes were incubated with GDP-L-[U-14C]fucose in vitro and the amount of polymer synthesized was found. The results showed that the Golgi apparatus had the highest amount of this fucosyl transferase activity, but there was a significant amount of activity associated with the endoplasmic reticulum and the latter was shifted in the sucrose gradient depending on the conditions used.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Author(s):  
Vinayak P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman

The concept of interfacial width is often invoked in many materials science phenomena which relate to the structure and properties of internal interfaces. The numerical value of interface width is an important input parameter in diffusion equations, sintering theories as well as in many electronic devices/processes. Most often, however, this value is guessed rather than determined or even estimated. In this paper we present a method of determining the effective structural and electronic- structural width of interphase interfaces using low- and core loss fine structure effects in EELS spectra.The specimens used in the study were directionally solidified eutectics (DSEs) in the system; NiO-ZrO2(CaO), NiO-Y2O3 and MnO-ZrO2(ss). EELS experiments were carried out using a VG HB-501 FE STEM and a Hitachi HF-2000 FE TEM.


1976 ◽  
Vol 22 (2) ◽  
pp. 403-411 ◽  
Author(s):  
M.J. Packard ◽  
S.M. Stack

Numerous vesicles were observed among the microtubules of the “preprophase” band in prophase cells from root tips of Allium cepa. The content of these vesicles looks similar to the matrix of adjacent cell walls, and these vesicles often appear to be involved in exocytosis. In addition, the cell walls perpendicular to the plane of (beneath) the preprophase band are often differentially thickened compared to the walls lying parallel to the plane of the band. Our interpretation of these observations is that the preprophase band may direct or channel vesicles containing precursors of the cell wall to localized regions of wall synthesis. The incorporation of constituents of the cell wall into a narrow region defined by the position of the preprophase band may be a mechanism that ensures unidirecitonal growth of meristematic cells.


Sign in / Sign up

Export Citation Format

Share Document