scholarly journals Hybrid Dysgenesis in Drosophila Melanogaster: A Possible Explanation in Terms of Spatial Organization of Chromosomes

1976 ◽  
Vol 29 (4) ◽  
pp. 375 ◽  
Author(s):  
JA Sved

Male.recombination and female sterility, two aspects of hybrid dysgenesis in D. melanogaster, have been studied in crosses between a locally collected wild population and laboratory strains. Dysgenesis occurs in the Fl hybrid of such crosses only if the wild type is used as maie parent and the laboratory strain as female, suggesting an interaction between genotype and cytoplasm. However the results from further crosses are difficult to interpret in terms of a conventional genotype--cytoplasm model, and suggest that for dysgenesis to occur it is necessary-that the wild-type chromosomes be contributed by the male parent. Furthermore, receipt of any of the three major wild-type chromosomes in crosses to laboratory females is sufficient to cause hybrid dysgenesis.

Genetics ◽  
1990 ◽  
Vol 126 (3) ◽  
pp. 619-623 ◽  
Author(s):  
E R Lozovskaya ◽  
V S Scheinker ◽  
M B Evgen'ev

Abstract A new example of "hybrid dysgenesis" has been demonstrated in the F1 progeny of crosses between two different strains of Drosophila virilis. The dysgenic traits were observed only in hybrids obtained when wild-type females (of the Batumi strain 9 from Georgia, USSR) were crossed to males from a marker strain (the long-established laboratory strain, strain 160, carrying recessive markers on all its autosomes). The phenomena observed include high frequencies of male and female sterility, male recombination, chromosomal nondisjunction, transmission ratio distortion and the appearance of numerous visible mutations at different loci in the progeny of dysgenic crosses. The sterility demonstrated in the present study is similar to that of P-M dysgenesis in Drosophila melanogaster and apparently results from underdevelopment of the gonads in both sexes, this phenomenon being sensitive to developmental temperature. However, in contrast to the P-M and I-R dysgenic systems in D. melanogaster, in D. virilis the highest level of sterility (95-98%) occurs at 23-25 degrees. Several of the mutations isolated from the progeny of dysgenic crosses (e.g., singed) proved to be unstable and reverted to wild type. We hypothesize that a mobile element ("Ulysses") which we have recently isolated from a dysgenically induced white eye mutation may be responsible for the phenomena observed.


Genetics ◽  
1972 ◽  
Vol 70 (4) ◽  
pp. 595-610
Author(s):  
Ray Moree

ABSTRACT The viability effects of chromosomes from an old and from a new laboratory strain of D. melanogaster were studied in eight factorial combinations and at two heterozygosity levels. The combinations were so constructed that heterozygosity level could be varied in the third chromosomes of the carriers of a homozygous lethal marker, in the third chromosomes of their wild-type segregants, and in the genetic backgrounds of both. Excluding the effect of the marker and the exceptional outcomes of two of the combinations, and taking into account both large and small deviations from theoretical expectation, the following summary is given as the simplest consistent explanation of the results: 1) If total heterozygosities of two segregant types tend toward equality their viabilities tend toward equality also, whether background heterozygosity is high or low; if background heterozygosities is higher the tendency toward equality is slightly greater. 2) If total heterozygosity of two segregant types are unequal the less heterozygous type has the lower viability; the difference is more pronounced when background heterozygosity is low, less when it is high. 3) Differences between segregant viabilities are correlated with differences between the total heterozygosities of the two segregants; genetic background is effective to the extent, and only to the extent, that it contributes to the magnitude of this difference. This in turn appears to underlie, at least partly, the expression of a pronounced interchromosomal epistasis. Thus in this study viability is seen to depend upon both the quantity and distribution of heterozygosity, not only among the chromosomes of an individual but among the individuals of a given combination as well.


Genetics ◽  
1986 ◽  
Vol 112 (4) ◽  
pp. 755-767
Author(s):  
S H Clark ◽  
M McCarron ◽  
C Love ◽  
A Chovnick

ABSTRACT DNA extracts of several rosy-mutation-bearing strains were associated with large insertions and deletions in a defined region of the molecular map believed to include the rosy locus DNA. Large-scale, intragenic mapping experiments were carried out that localized these mutations within the boundaries of the previously defined rosy locus structural element. Molecular characterization of the wild-type recombinants provides conclusive evidence that the rosy locus DNA is localized to the DNA segment marked by these lesions.—One of the mutations, ry  2101, arose from a P-M hybrid dysgenesis experiment and is associated with a copia insertion. Experiments are described which suggest that copia mobilizes in response to P-M hybrid dysgenesis.—Relevance of the data to recombination in higher organisms is considered.


1978 ◽  
Vol 32 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Alain Pélisson

SUMMARYA quite specific kind of sterile F1 female, called SF females, arises only when females of strains denoted reactive are crossed with males of the other class (inducer). It was previously shown that this sterility results from a nucleocytoplasmic interaction between the maternal reactive cytoplasm and a factor, called I, which may be born by any one of the paternal chromosomes. In SF females, but not in their brothers, a varying proportion of reactive chromosomes are able to acquire irreversibly the I factor, independently of any classical genetic recombination with the inducer chromosome(s). During this process, called chromosomal contamination, the contaminating chromosome(s) do not undergo any apparent change. The present paper deals with the efficiency of both original inducer and contaminated chromosomes to yield a more or less intense SF sterility. The Otanu inducer laboratory strain contains at least two types of X chromosomes (called strong and weak) which differ genetically with respect to their inducer efficiency. Reactive third chromosomes were contaminated by these strong or weak X chromosomes and their inducer efficiencies compared. Results show that they are on average stronger when they have been contaminated by strong X chromosomes than when contaminated by weak ones. Such a correlation favours the hypothesis that chromosomal contamination is due to the insertion of some genetic element(s) into reactive chromosomes.


1986 ◽  
Vol 6 (5) ◽  
pp. 1520-1528 ◽  
Author(s):  
D Y Chang ◽  
B Wisely ◽  
S M Huang ◽  
R A Voelker

A hybrid dysgenesis-induced allele [su(s)w20] associated with a P-element insertion was used to clone sequences from the su(s) region of Drosophila melanogaster by means of the transposon-tagging technique. Cloned sequences were used to probe restriction enzyme-digested DNAs from 22 other su(s) mutations. None of three X-ray-induced or six ethyl methanesulfonate-induced su(s) mutations possessed detectable variation. Seven spontaneous, four hybrid dysgenesis-induced, and two DNA transformation-induced mutations were associated with insertions within 2.0 kilobases (kb) of the su(s)w20 P-element insertion site. When the region of DNA that included the mutational insertions was used to probe poly(A)+ RNAs, a 5-kb message was detected in wild-type RNA that was present in greatly reduced amounts in two su(s) mutations. By using strand-specific probes, the direction of transcription of the 5-kb message was determined. The mutational insertions lie in DNA sequences near the 5' end of the 5-kb message. Three of the seven spontaneous su(s) mutations are associated with gypsy insertions, but they are not suppressible by su(Hw).


Genetics ◽  
1987 ◽  
Vol 115 (1) ◽  
pp. 153-160
Author(s):  
Hugo J Bellen ◽  
John A Kiger

ABSTRACT The dunce gene of Drosophila melanogaster codes for a cyclic adenosine-3',5'-monophosphate-specific phosphodiesterase. Mutations of dunce alter or abolish the activity of this enzyme, produce elevated cAMP levels, cause recessive female sterility, and produce learning deficiencies in both sexes. Aberrant male sexual behavior has also been associated with the memory defects of dunce mutants. Here we show that the longevity of dunce mutant females, homozygous for null-enzyme alleles, is reduced by 50% in the presence of males compared to control dunce females kept without males. Mutant dunce females mate on average every 14 hours whereas wild type revertants of dunce, and Canton-S females, mate every 22-24 hr. We propose a cause-effect relationship between mating and reduced longevity. Pheromones or peptides transferred during mating may activate adenylate cyclase and create an increase in cAMP levels that cannot be damped in dunce females. This increase may affect basic physiological functions and lead to reduced longevity


1979 ◽  
Vol 33 (2) ◽  
pp. 137-146 ◽  
Author(s):  
William R. Engels

SUMMARYMale sterility, male recombination, and transmission ratio distortion – all examples of a syndrome known as hybrid dysgenesis in Drosophila melanogaster – were found to involve chromosome–cytoplasm interactions. The latter two have temperature optima near 25° and involve pre-meiotic events. In addition, sex ratio distortion, and induction of certain translocations of the X and Y chromosomes (but not the autosomes) were found to be part of hybrid dysgenesis. Both are caused by chromosome–cytoplasm interactions with pre-meiotic events playing a crucial role. The results agree with previous data on female sterility in hybrid dysgenesis, which also has cytoplasmic components and premeiotic origins.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 75-83
Author(s):  
H Roiha ◽  
G M Rubin ◽  
K O'Hare

Abstract DNA from the singed gene of Drosophila melanogaster was isolated using an inversion between a previously cloned P element at cytological location 17C and the hypermutable allele singed-weak. Five out of nine singed mutants examined have alterations in their DNA maps in this region. The singed locus is a hotspot for mutation during P-M hybrid dysgenesis, and we have analyzed 22 mutations induced by P-M hybrid dysgenesis. All 22 have a P element inserted within a 700-bp region. The precise positions of 10 P element insertions were determined and they define 4 sites within a 100-bp interval. During P-M hybrid dysgenesis, the singed-weak allele is destabilized, producing two classes of phenotypically altered derivatives at high frequency. In singed-weak, two defective P elements are present in a "head-to-head" or inverse tandem arrangement. Excision of one element results in a more extreme singed bristle phenotype while excision of the other leads to a wild-type bristle phenotype.


1986 ◽  
Vol 48 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Benjamin J. Fitzpatrick ◽  
John A. Sved

SummaryWild-type chromosomes of D. melanogaster mutagenized by passage through a single generation of hybrid dysgenesis have been compared against identical chromosomes passed through a reciprocal, non-dysgenic cross. Fitness of the chromosome in homozygous condition has been examined in population cages using the technique of balancer chromosome equilibration. The results indicate that amongst chromosomes with no lethal or visible mutation, more than 50% have suffered a measurable decline in fitness. The magnitude of this decline is estimated to be in the range 10–20%.


Sign in / Sign up

Export Citation Format

Share Document