Potential CO2-Enhanced Carbon Storage by the Terrestrial Biosphere

1992 ◽  
Vol 40 (5) ◽  
pp. 641 ◽  
Author(s):  
PJ Polglase ◽  
YP Wang

Geochemical models that deduce latitudinal source/sink relationships of atmospheric CO2 suggest that, in tropical regions, there is almost zero net exchange of CO2 between the atmosphere and the terrestrial biosphere. The implication is that CO2-enhanced carbon storage (CO2-ECS) by tropical biomes is negating the output of CO2 from deforestation. We describe here a 10-biome model for CO2-ECS, in which carbon accumulation in living vegetation is coupled to the Rothamsted soil carbon model. A biotic growth factor (β) was used to describe the relationship between literature estimates of net primary production (NPP) and atmospheric CO2 concentration. Using β = 0.3 as a reference state, CO2-ECS by the global biosphere in 1990 was 1.1 Gt. When more appropriate values of β were used (derived from a theoretical response of vegetation to increasing temperature and CO2), CO2-ECS was 1.3 Gt, of which tropical biomes accounted for 0.7 Gt. There are many uncertainties in this (and other) models; total CO2-ECS is particularly sensitive to changes in NPP. Unless published surveys have underestimated tropical NPP by a factor of about 2, then it is unlikely that CO2-ECS could have negated the 1.5-3.0 Gt of carbon that are estimated to have been emitted by tropical deforestation in 1990.

2016 ◽  
Vol 29 (24) ◽  
pp. 8783-8805 ◽  
Author(s):  
Jin-Soo Kim ◽  
Jong-Seong Kug ◽  
Jin-Ho Yoon ◽  
Su-Jong Jeong

Abstract Better understanding of factors that control the global carbon cycle could increase confidence in climate projections. Previous studies found good correlation between the growth rate of atmospheric CO2 concentration and El Niño–Southern Oscillation (ENSO). The growth rate of atmospheric CO2 increases during El Niño but decreases during La Niña. In this study, long-term simulations of the Earth system models (ESMs) in phase 5 of the Coupled Model Intercomparison Project archive were used to examine the interannual carbon flux variability associated with ENSO. The ESMs simulate the relationship reasonably well with a delay of several months between ENSO and the changes in atmospheric CO2. The increase in atmospheric CO2 associated with El Niño is mostly caused by decreasing net primary production (NPP) in the ESMs. It is suggested that NPP anomalies over South Asia are at their maxima during boreal spring; therefore, the increase in CO2 concentration lags 4–5 months behind the peak phase of El Niño. The decrease in NPP during El Niño may be caused by decreased precipitation and increased temperature over tropical regions. Furthermore, systematic errors may exist in the ESM-simulated temperature responses to ENSO phases over tropical land areas, and these errors may lead to an overestimation of ENSO-related NPP anomalies. In contrast, carbon fluxes from heterotrophic respiration and natural fires are likely underestimated in the ESMs compared with offline model results and observational estimates, respectively. These uncertainties should be considered in long-term projections that include climate–carbon feedbacks.


2018 ◽  
Vol 14 (8) ◽  
pp. 1229-1252 ◽  
Author(s):  
Carlye D. Peterson ◽  
Lorraine E. Lisiecki

Abstract. We present a compilation of 127 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 ka) which is well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


2019 ◽  
Vol 6 (4) ◽  
pp. 746-757 ◽  
Author(s):  
Guoyi Zhou ◽  
Shan Xu ◽  
Philippe Ciais ◽  
Stefano Manzoni ◽  
Jingyun Fang ◽  
...  

Abstract Soil organic carbon (SOC) plays critical roles in stabilizing atmospheric CO2 concentration, but the mechanistic controls on the amount and distribution of SOC on global scales are not well understood. In turn, this has hampered the ability to model global C budgets and to find measures to mitigate climate change. Here, based on the data from a large field survey campaign with 2600 plots across China's forest ecosystems and a global collection of published data from forested land, we find that a low litter carbon-to-nitrogen ratio (C/N) and high wetness index (P/PET, precipitation-to-potential-evapotranspiration ratio) are the two factors that promote SOC accumulation, with only minor contributions of litter quantity and soil texture. The field survey data demonstrated that high plant diversity decreased litter C/N and thus indirectly promoted SOC accumulation by increasing the litter quality. We conclude that any changes in plant-community composition, plant-species richness and environmental factors that can reduce the litter C/N ratio, or climatic changes that increase wetness index, may promote SOC accumulation. The study provides a guideline for modeling the carbon cycle of various ecosystem scales and formulates the principle for land-based actions for mitigating the rising atmospheric CO2 concentration.


1992 ◽  
Vol 40 (5) ◽  
pp. 697 ◽  
Author(s):  
MR Raupach ◽  
OT Denmead ◽  
FX Dunin

We describe relationships between atmospheric CO2 concentration variations and CO2 source-sink distributions, at two important scales between the single plant and the whole earth: the vegetation canopy and the atmospheric planetary boundary layer. For both these scales, it is shown how knowledge of turbulence and scalar dispersion can be applied to infer CO2 source-sink distributions or fluxes from concentration measurements. At the canopy scale, the turbulent transfer of CO2 and other scalars is non-diffusive close to any point source or sink in the canopy, but diffusive at greater distances. This distinction leads to a physically tenable description of turbulent transfer, and thence to an 'inverse method' for finding the vertical profiles of sources and sinks in the canopy from measured concentration profiles. The method is tested with data from a wheat crop. At the scale of the planetary boundary layer, we consider the daily CO2 concentration drawdown (the depression of the near-surface CO2 concentration below the free-atmosphere value) of typically 20-40 ppm. This is determined by both the regionally averaged CO2 uptake at the surface and the growth of the daytime convective boundary layer (CBL). It is shown that, for a column of air which fills the CBL and is moved across the landscape by the mean wind, the net cumulative surface CO2 flux (in mol m-2) is given to a good approximation by h(t)[Cm(t) - C+]/V, where h(t) is CBL depth, Cm(t) the CO2 concentration in the CBL column in mol mol-1, C+ the concentration above the CBL, V the molar volume and time t is measured from the time at which Cm = C+ in the morning, typically about 0800 hours local time. The resulting CO2 flux estimates are regionally averaged over the trajectory followed by the column. This 'CBL budget method' for inferring surface fluxes is compared with direct measurements of CO2 fluxes, with satisfactory results. The technique has application to scalars other than CO2.


Author(s):  
Corinne Le Quéré ◽  
Robbie M. Andrew ◽  
Pierre Friedlingstein ◽  
Stephen Sitch ◽  
Julia Pongratz ◽  
...  

Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.


2021 ◽  
Vol 13 (2) ◽  
pp. 299-330
Author(s):  
Junjie Liu ◽  
Latha Baskaran ◽  
Kevin Bowman ◽  
David Schimel ◽  
A. Anthony Bloom ◽  
...  

Abstract. Here we present a global and regionally resolved terrestrial net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020). It is estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) top-down flux inversion system that assimilates column CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT) and NASA's Observing Carbon Observatory 2 (OCO-2). The regional monthly fluxes are readily accessible as tabular files, and the gridded fluxes are available in NetCDF format. The fluxes and their uncertainties are evaluated by extensively comparing the posterior CO2 mole fractions with CO2 observations from aircraft and the NOAA marine boundary layer reference sites. We describe the characteristics of the dataset as the global total, regional climatological mean, and regional annual fluxes and seasonal cycles. We find that the global total fluxes of the dataset agree with atmospheric CO2 growth observed by the surface-observation network within uncertainty. Averaged between 2010 and 2018, the tropical regions range from close to neutral in tropical South America to a net source in Africa; these contrast with the extra-tropics, which are a net sink of 2.5±0.3 Gt C/year. The regional satellite-constrained NBE estimates provide a unique perspective for understanding the terrestrial biosphere carbon dynamics and monitoring changes in regional contributions to the changes of atmospheric CO2 growth rate. The gridded and regional aggregated dataset can be accessed at https://doi.org/10.25966/4v02-c391 (Liu et al., 2020).


2014 ◽  
Vol 27 (9) ◽  
pp. 3425-3445 ◽  
Author(s):  
Tomohiro Hajima ◽  
Kaoru Tachiiri ◽  
Akihiko Ito ◽  
Michio Kawamiya

Abstract Carbon uptake by land and ocean as a biogeochemical response to increasing atmospheric CO2 concentration is called concentration–carbon feedback and is one of the carbon cycle feedbacks of the global climate. This feedback can have a major impact on climate projections with an uncertain magnitude. This paper focuses on the concentration–carbon feedback in terrestrial ecosystems, analyzing the mechanisms and strength of the feedback reproduced by Earth system models (ESMs) participating in phase 5 of the Coupled Model Intercomparison Project. It is confirmed that multiple ESMs driven by a common scenario show a large spread of concentration–carbon feedback strength among models. Examining the behavior of the carbon fluxes and pools of the models showed that the sensitivity of plant productivity to elevated CO2 is likely the key to reduce the spread, although increasing CO2 stimulates other carbon cycle processes. Simulations with a single ESM driven by different CO2 pathways demonstrated that carbon accumulation increases in scenarios with slower CO2 increase rates. Using both numerical and analytical approaches, the study showed that the difference among CO2 scenarios is a time lag of terrestrial carbon pools in response to atmospheric CO2 increase—a high rate of CO2 increase results in smaller carbon accumulations than that in an equilibrium state of a given CO2 concentration. These results demonstrate that the current quantities for concentration–carbon feedback are incapable of capturing the feedback dependency on the carbon storage state and suggest that the concentration feedback can be larger for future scenarios where the CO2 growth rate is reduced.


2020 ◽  
Author(s):  
Junjie Liu ◽  
Latha Baskaran ◽  
Kevin Bowman ◽  
David Schimel ◽  
A. Anthony Bloom ◽  
...  

Abstract. Here we present a global and regionally-resolved terrestrial net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. It is estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) top-down flux inversion system that assimilates column CO2 observations from Greenhouse gases Observing SATellite (GOSAT) and the NASA’s Observing Carbon Observatory-2 (OCO-2). The regional monthly fluxes are readily accessible as tabular files, and the gridded fluxes are available in NetCDF format. The fluxes and their uncertainty estimates are evaluated by extensively comparing the posterior CO2 mole fractions with aircraft CO2 observations. We describe the characteristics of the dataset as global total, regional climatological mean, and regional annual fluxes and seasonal cycles. We find that the global total fluxes of the dataset agree with atmospheric CO2 growth observed by the surface-observation network within uncertainty. Averaged between 2010 and 2018, the tropical regions range from close-to neutral in tropical South America to a net source in Africa; these contrast the extra-tropics, which are a net sink of 2.5 ± 0.3 gigaton carbon per year. The regional satellite-constrained NBE estimates provide a unique perspective for understanding the terrestrial biosphere carbon dynamics and monitoring changes in regional contributions to the changes of atmospheric CO2 growth rate. The gridded and regional aggregated dataset can be accessed at: https://doi.org/10.25966%2F4v02-c391 (Liu et al., 2020).


2006 ◽  
Vol 3 (4) ◽  
pp. 871-894
Author(s):  
M. R. Hoosbeek ◽  
J. M. Vos ◽  
G. E. Scarascia-Mugnozza

Abstract. Free air CO2 enrichment (FACE) experiments in aggrading forests and plantations have demonstrated significant increases in net primary production (NPP) and C storage in forest vegetation. The extra C uptake may also be stored in forest floor litter and in forest soil. After five years of FACE treatment at the EuroFACE short rotation poplar plantation, the increase of total soil C% was larger under elevated than under ambient CO2. However, the fate of this additional C allocated belowground remains unclear. The stability of soil organic matter is controlled by the chemical structure of the organic matter and the existence of protection offered by the soil matrix and minerals. Fresh litter entering the soil enhances microbial activity which induces the binding of organic matter and soil particles into macro-aggregates. As the enclosed organic matter is decomposed, microbial and decomposition products become associated with mineral particles. This association results in the formation of micro-aggregates (within macro-aggregates) in which organic matter is stabilized and protected. FACE and N-fertilization treatment did not affect the micro- and macro-aggregate weight, C or N fractions obtained by wet sieving. However, Populus euramericana increased the micro- and small macro-aggregates weight and C fractions. The obtained macro-aggregates were broken up in order to isolate recently formed micro-aggregates within macro-aggregates (iM-micro-aggregates). FACE increased the iM-micro-aggregate weight and C fractions. This study reveals that: 1) Species has an effect on the formation of macro-aggregates. The choice of species in a plantation or the effect of global change on species diversity, may therefore affect the stabilization and protection of soil C in aggregates. And 2) Increased atmospheric CO2 concentration increases the stabilization and protection of soil C in micro-aggregates formed within macro-aggregates. This mechanism increases the C sink of forest soils under increasing atmospheric CO2 concentration.


Sign in / Sign up

Export Citation Format

Share Document