Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals

2007 ◽  
Vol 60 (7) ◽  
pp. 457 ◽  
Author(s):  
Joel van Embden ◽  
Jacek Jasieniak ◽  
Daniel E. Gómez ◽  
Paul Mulvaney ◽  
Michael Giersig

Passivation of CdSe semiconductor nanocrystals can be achieved by overcoating the particles with a homogeneous shell of a second semiconductor. Shell layers are grown in monolayer steps to ensure homogeneous growth of the shell. The relative band edges of the two materials determine the photoreactiveity of the resultant core-shell nanocrystals. The critical role of ligands in minimizing nucleation of the shell material during the growth of the passivating layer is emphasized. The delocalization of charge carriers into the shell layers can be followed spectroscopically during the growth processes. The relative spectral shifts are directly correlated to the relative energies of the band edges.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Adèle Renaud ◽  
Laurent Cario ◽  
Xavier Rocquefelte ◽  
Philippe Deniard ◽  
Eric Gautron ◽  
...  

Abstract Owing to its high technological importance for optoelectronics, zinc oxide received much attention. In particular, the role of defects on its physical properties has been extensively studied as well as their thermodynamical stability. In particular, a large concentration of Zn vacancies in ZnO bulk materials is so far considered highly unstable. Here we report that the thermal decomposition of zinc peroxide produces wurtzite-type ZnO nanoparticles with an extraordinary large amount of zinc vacancies (>15%). These Zn vacancies segregate at the surface of the nanoparticles, as confirmed by ab initio calculations, to form a pseudo core-shell structure made of a dense ZnO sphere coated by a Zn free oxo-hydroxide mono layer. In others terms, oxygen terminated surfaces are privileged over zinc-terminated surfaces for passivation reasons what accounts for the Zn off-stoichiometry observed in ultra-fine powdered samples. Such Zn-deficient Zn1-xO nanoparticles exhibit an unprecedented photoluminescence signature suggesting that the core-shell-like edifice drastically influences the electronic structure of ZnO. This nanostructuration could be at the origin of the recent stabilisation of p-type charge carriers in nitrogen-doped ZnO nanoparticles.


2020 ◽  
Vol 2 (10) ◽  
pp. 4841-4852
Author(s):  
Varsha Thambi ◽  
Abhay Raj Singh Gautam ◽  
Saumyakanti Khatua

We report the synthesis and enhanced catalytic activity of broken-shell nano-peanuts with variable hole size.


2020 ◽  
Vol 6 (37) ◽  
pp. eabb6393
Author(s):  
Artem Musiienko ◽  
Jindřich Pipek ◽  
Petr Praus ◽  
Mykola Brynza ◽  
Eduard Belas ◽  
...  

Halide perovskites have undergone remarkable developments as highly efficient optoelectronic materials for a variety of applications. Several studies indicated the critical role of defects on the performance of perovskite devices. However, the parameters of defects and their interplay with free charge carriers remain unclear. In this study, we explored the dynamics of free holes in methylammonium lead tribromide (MAPbBr3) single crystals using the time-of-flight (ToF) current spectroscopy. By combining ToF spectroscopy and Monte Carlo simulation, three energy states were detected in the bandgap of MAPbBr3. In addition, we found the trapping and detrapping rates of free holes ranging from a few microseconds to hundreds of microseconds. Contrary to previous studies, we revealed a strong detrapping activity of traps. We showed that these traps substantially affect the transport properties of MAPbBr3, including mobility and mobility-lifetime product. Our results provide an insight on charge transport properties of perovskite semiconductors.


2015 ◽  
Vol 51 (39) ◽  
pp. 8334-8337 ◽  
Author(s):  
Bora Seo ◽  
Hu Young Jeong ◽  
Sung You Hong ◽  
Alla Zak ◽  
Sang Hoon Joo

Tungsten oxide/tungsten sulfide (W18O49@WS2) core–shell nanorods prepared via controlled sulfidization reaction of W18O49 nanowhiskers showed hydrogen evolution reaction (HER) activity superior to WS2 nanotubes, indicating the critical role of a highly conductive oxide core in enhancing HER activity.


2020 ◽  
Vol 124 (24) ◽  
pp. 13365-13373 ◽  
Author(s):  
Song Sun ◽  
Ilia L. Rasskazov ◽  
P. Scott Carney ◽  
Taiping Zhang ◽  
Alexander Moroz

ChemInform ◽  
2007 ◽  
Vol 38 (41) ◽  
Author(s):  
Joel van Embden ◽  
Jacek Jasieniak ◽  
Daniel E. Gomez ◽  
Paul Mulvaney ◽  
Michael Giersig

RSC Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 2857-2868 ◽  
Author(s):  
Ezequiel R. Encina ◽  
Nicolás Passarelli ◽  
Eduardo A. Coronado

The absorbed photon flux in cylindrical α-Fe2O3 shells can be enhanced by filling it with an Al core and tailoring its length.


2008 ◽  
Vol 15 (2) ◽  
pp. 50-59 ◽  
Author(s):  
Amy Philofsky

AbstractRecent prevalence estimates for autism have been alarming as a function of the notable increase. Speech-language pathologists play a critical role in screening, assessment and intervention for children with autism. This article reviews signs that may be indicative of autism at different stages of language development, and discusses the importance of several psychometric properties—sensitivity and specificity—in utilizing screening measures for children with autism. Critical components of assessment for children with autism are reviewed. This article concludes with examples of intervention targets for children with ASD at various levels of language development.


1998 ◽  
Vol 5 (1) ◽  
pp. 115A-115A
Author(s):  
K CHWALISZ ◽  
E WINTERHAGER ◽  
T THIENEL ◽  
R GARFIELD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document