Transformation of Cadmium Tetracyanoquinodimethane (TCNQ) into a Cadmium Terephthalate Metal–Organic Framework

2017 ◽  
Vol 70 (9) ◽  
pp. 973
Author(s):  
Manzar Sohail ◽  
Farooq Ahmad Kiani ◽  
Vedapriya Pandarinathan ◽  
Safyan Akram Khan ◽  
Damien J. Carter ◽  
...  

The transformation of cadmium 7,7,8,8-tetracyanoquinodimethane (TCNQ) into a cadmium terephthalate co-ordination polymer is reported, with the chemistry of this material elucidated using elemental analysis, X-ray photoelectron spectroscopy and synchrotron radiation single-crystal X-ray diffraction. A heptacoordinated CdII linear coordination polymer catena-poly[triaqua-(μ2-benzene-1,4-dicarboxylato-κO,O′)cadmium(ii)]hydrate (1) was isolated while attempting to recrystallize Cd(TCNQ)2. Density functional theory calculations for the oxidation of benzylic carbon attached to the cyano group provided evidence that the reaction pathway proposed herein is highly exergonic and thermodynamically plausible. This structure showed a distorted pentagonal bipyramidal geometry together with a symmetrical mononuclear unit in which each CdII ion is doubly bridged by a dicarboxylato anion. Owing to the softness and minute size of these crystals, this structure had to be elucidated using synchrotron radiation X-ray crystallography.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid T. Qazvini ◽  
Ravichandar Babarao ◽  
Shane G. Telfer

AbstractEfficient and sustainable methods for carbon dioxide capture are highly sought after. Mature technologies involve chemical reactions that absorb CO2, but they have many drawbacks. Energy-efficient alternatives may be realised by porous physisorbents with void spaces that are complementary in size and electrostatic potential to molecular CO2. Here, we present a robust, recyclable and inexpensive adsorbent termed MUF-16. This metal-organic framework captures CO2 with a high affinity in its one-dimensional channels, as determined by adsorption isotherms, X-ray crystallography and density-functional theory calculations. Its low affinity for other competing gases delivers high selectivity for the adsorption of CO2 over methane, acetylene, ethylene, ethane, propylene and propane. For equimolar mixtures of CO2/CH4 and CO2/C2H2, the selectivity is 6690 and 510, respectively. Breakthrough gas separations under dynamic conditions benefit from short time lags in the elution of the weakly-adsorbed component to deliver high-purity hydrocarbon products, including pure methane and acetylene.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4352
Author(s):  
Yanli Kang ◽  
Lu Zhang ◽  
Wenhao Wang ◽  
Feng Yu

It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature. Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger specific surface area (22.79 m2 g−1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250 °C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to density functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (−1.813 eV) is significantly greater than that of pure ZnO (−0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.


2021 ◽  
Vol 7 (18) ◽  
pp. eabg2580
Author(s):  
Weiren Cheng ◽  
Huabin Zhang ◽  
Deyan Luan ◽  
Xiong Wen (David) Lou

Conductive metal-organic framework (MOF) materials have been recently considered as effective electrocatalysts. However, they usually suffer from two major drawbacks, poor electrochemical stability and low electrocatalytic activity in bulk form. Here, we have developed a rational strategy to fabricate a promising electrocatalyst composed of a nanoscale conductive copper-based MOF (Cu-MOF) layer fully supported over synergetic iron hydr(oxy)oxide [Fe(OH)x] nanoboxes. Owing to the highly exposed active centers, enhanced charge transfer, and robust hollow nanostructure, the obtained Fe(OH)x@Cu-MOF nanoboxes exhibit superior activity and stability for the electrocatalytic hydrogen evolution reaction (HER). Specifically, it needs an overpotential of 112 mV to reach a current density of 10 mA cm−2 with a small Tafel slope of 76 mV dec−1. X-ray absorption fine structure spectroscopy combined with density functional theory calculations unravels that the highly exposed coordinatively unsaturated Cu1-O2 centers could effectively accelerate the formation of key *H intermediates toward fast HER kinetics.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


2019 ◽  
Author(s):  
Barbara Souza ◽  
Lorenzo Dona ◽  
Kirill Titov ◽  
Paolo Bruzzese ◽  
Zhixin Zeng ◽  
...  

Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.<br>


2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


2019 ◽  
Author(s):  
Barbara Souza ◽  
Lorenzo Dona ◽  
Kirill Titov ◽  
Paolo Bruzzese ◽  
Zhixin Zeng ◽  
...  

Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.<br>


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Pham Dinh Du ◽  
Huynh Thi Minh Thanh ◽  
Thuy Chau To ◽  
Ho Sy Thang ◽  
Mai Xuan Tinh ◽  
...  

In the present paper, the synthesis of metal-organic framework MIL-101 and its application in the photocatalytic degradation of Remazol Black B (RBB) dye have been demonstrated. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms at 77 K. It was found that MIL-101 synthesized under optimal conditions exhibited high crystallinity and specific surface area (3360 m2·g-1). The obtained MIL-101 possessed high stability in water for 14 days and several solvents (benzene, ethanol, and water at boiling temperature). Its catalytic activities were evaluated by measuring the degradation of RBB in an aqueous solution under UV radiation. The findings show that MIL-101 was a heterogeneous photocatalyst in the degradation reaction of RBB. The mechanism of photocatalysis was considered to be achieved by the electron transfer from photoexcited organic ligands to metallic clusters in MIL-101. The kinetics of photocatalytic degradation reaction were analyzed by using the initial rate method and Langmuir-Hinshelwood model. The MIL-101 photocatalyst exhibited excellent catalytic recyclability and stability and can be a potential catalyst for the treatment of organic pollutants in aqueous solutions.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 273 ◽  
Author(s):  
Sudheer S. Kurup ◽  
Richard J. Staples ◽  
Richard L. Lord ◽  
Stanislav Groysman

Synthesis of new chromium(II) complexes with chelating bis(alkoxide) ligand [OO]Ph (H2[OO]Ph = [1,1′:4′,1′’-terphenyl]-2,2′’-diylbis(diphenylmethanol)) and their subsequent reactivity in the context of catalytic production of carbodiimides from azides and isocyanides are described. Two different Cr(II) complexes are obtained, as a function of the crystallization solvent: mononuclear Cr[OO]Ph(THF)2 (in toluene/THF, THF = tetrahydrofuran) and dinuclear Cr2([OO]Ph)2 (in CH2Cl2/THF). The electronic structure and bonding in Cr[OO]Ph(THF)2 were probed by density functional theory calculations. Isolated Cr2([OO]Ph)2 undergoes facile reaction with 4-MeC6H4N3, 4-MeOC6H4N3, or 3,5-Me2C6H3N3 to yield diamagnetic Cr(VI) bis(imido) complexes; a structure of Cr[OO]Ph(N(4-MeC6H4))2 was confirmed by X-ray crystallography. The reaction of Cr2([OO]Ph)2 with bulkier azides N3R (MesN3, AdN3) forms paramagnetic products, formulated as Cr[OO]Ph(NR). The attempted formation of a Cr–alkylidene complex (using N2CPh2) instead forms chromium(VI) bis(diphenylmethylenehydrazido) complex Cr[OO]Ph(NNCPh2)2. Catalytic formation of carbodiimides was investigated for the azide/isocyanide mixtures containing various aryl azides and isocyanides. The formation of carbodiimides was found to depend on the nature of organoazide: whereas bulky mesitylazide led to the formation of carbodiimides with all isocyanides, no carbodiimide formation was observed for 3,5-dimethylphenylazide or 4-methylphenylazide. Treatment of Cr2([OO]Ph)2 or H2[OO]Ph with NO+ leads to the formation of [1,2-b]-dihydroindenofluorene, likely obtained via carbocation-mediated cyclization of the ligand.


Sign in / Sign up

Export Citation Format

Share Document