scholarly journals Elucidating the Drug Release from Metal-Organic Framework Nanocomposites via in Situ Synchrotron Microspectroscopy and Theoretical Modelling

Author(s):  
Barbara Souza ◽  
Lorenzo Dona ◽  
Kirill Titov ◽  
Paolo Bruzzese ◽  
Zhixin Zeng ◽  
...  

Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.<br>

2019 ◽  
Author(s):  
Barbara Souza ◽  
Lorenzo Dona ◽  
Kirill Titov ◽  
Paolo Bruzzese ◽  
Zhixin Zeng ◽  
...  

Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.<br>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid T. Qazvini ◽  
Ravichandar Babarao ◽  
Shane G. Telfer

AbstractEfficient and sustainable methods for carbon dioxide capture are highly sought after. Mature technologies involve chemical reactions that absorb CO2, but they have many drawbacks. Energy-efficient alternatives may be realised by porous physisorbents with void spaces that are complementary in size and electrostatic potential to molecular CO2. Here, we present a robust, recyclable and inexpensive adsorbent termed MUF-16. This metal-organic framework captures CO2 with a high affinity in its one-dimensional channels, as determined by adsorption isotherms, X-ray crystallography and density-functional theory calculations. Its low affinity for other competing gases delivers high selectivity for the adsorption of CO2 over methane, acetylene, ethylene, ethane, propylene and propane. For equimolar mixtures of CO2/CH4 and CO2/C2H2, the selectivity is 6690 and 510, respectively. Breakthrough gas separations under dynamic conditions benefit from short time lags in the elution of the weakly-adsorbed component to deliver high-purity hydrocarbon products, including pure methane and acetylene.


2021 ◽  
Vol 7 (18) ◽  
pp. eabg2580
Author(s):  
Weiren Cheng ◽  
Huabin Zhang ◽  
Deyan Luan ◽  
Xiong Wen (David) Lou

Conductive metal-organic framework (MOF) materials have been recently considered as effective electrocatalysts. However, they usually suffer from two major drawbacks, poor electrochemical stability and low electrocatalytic activity in bulk form. Here, we have developed a rational strategy to fabricate a promising electrocatalyst composed of a nanoscale conductive copper-based MOF (Cu-MOF) layer fully supported over synergetic iron hydr(oxy)oxide [Fe(OH)x] nanoboxes. Owing to the highly exposed active centers, enhanced charge transfer, and robust hollow nanostructure, the obtained Fe(OH)x@Cu-MOF nanoboxes exhibit superior activity and stability for the electrocatalytic hydrogen evolution reaction (HER). Specifically, it needs an overpotential of 112 mV to reach a current density of 10 mA cm−2 with a small Tafel slope of 76 mV dec−1. X-ray absorption fine structure spectroscopy combined with density functional theory calculations unravels that the highly exposed coordinatively unsaturated Cu1-O2 centers could effectively accelerate the formation of key *H intermediates toward fast HER kinetics.


2020 ◽  
Author(s):  
Barbara Souza ◽  
Jin-Chong Tan

We report two solvent-free mechanochemical methods to achieve one‑pot encapsulation of anti-cancer drug 5‑Fluorouracil (5‑FU) in the iron-based MIL‑100 metal-organic framework (MOF). We compare the structural and physicochemical properties of drug@MIL‑100 systems derived from <i>in situ </i>manual and vortex grinding, where the former exhibits a slower drug release due to stronger guest-host interactions.


2020 ◽  
Author(s):  
Bikash Garai ◽  
Volodymyr Bon ◽  
Francesco Walenszus ◽  
Azat Khadiev ◽  
Dmitri Novikov ◽  
...  

Variation in the metal centres of M-M paddle-wheel SBU results in the formation of isostructural DUT-49(M) frameworks. However, the porosity of the framework was found to be different for each of the structures. While a high and moderate porosity was obtained for DUT-49(Cu) and DUT-49(Ni), respectively, other members of the series [DUT-49(M); M= Mn, Fe, Co, Zn, Cd] show very low porosity and shapes of the adsorption isotherms which is not expected for op phases of these MOFs. Investigation on those MOFs revealed that those frameworks undergo structural collapse during the solvent removal at the activation step. Thus, herein, we aimed to study the detailed structural transformations that are possibly occurring during the removal of the subcritical fluid from the framework.


2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 810
Author(s):  
Mikhail V. Kirichkov ◽  
Aram L. Bugaev ◽  
Alina A. Skorynina ◽  
Vera V. Butova ◽  
Andriy P. Budnyk ◽  
...  

The formation of palladium hydrides is a well-known phenomenon, observed for both bulk and nanosized samples. The kinetics of hydrogen adsorption/desorption strongly depends on the particle size and shape, as well as the type of support and/or coating of the particles. In addition, the structural properties of hydride phases and their distribution also depend on the particle size. In this work, we report on the in situ characterization of palladium nanocubes coated with HKUST-1 metal-organic framework (Pd@HKUST-1) during desorption of hydrogen by means of synchrotron-based time-resolved X-ray powder diffraction. A slower hydrogen desorption, compared to smaller sized Pd nanoparticles was observed. Rietveld refinement of the time-resolved data revealed the remarkable stability of the lattice parameters of α- and β-hydride phases of palladium during the α- to β- phase transition, denoting the behavior more similar to the bulk materials than nanoparticles. The stability in the crystal sizes for both α- and β-hydride phases during the phase transition indicates that no sub-domains are formed within a single particle during the phase transition.


2018 ◽  
Vol 118 (7) ◽  
pp. 3681-3721 ◽  
Author(s):  
Mary J. Van Vleet ◽  
Tingting Weng ◽  
Xinyi Li ◽  
J.R. Schmidt

2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


Sign in / Sign up

Export Citation Format

Share Document