A Highly Sensitive and Label-Free Microbead-Based ‘Turn-On’ Colorimetric Sensor for the Detection of Mercury(II) in Urine Using a Peroxidase-Like Split G-Quadruplex–Hemin DNAzyme

2018 ◽  
Vol 71 (12) ◽  
pp. 945
Author(s):  
Xin Fu ◽  
He Zhang ◽  
Jie Zhang ◽  
Shi-Tong Wen ◽  
Xing-Cheng Deng

A highly sensitive and label-free microbead-based ‘turn-on’ assay was developed for the detection of Hg2+ in urine based on the Hg2+-mediated formation of intermolecular split G-quadruplex–hemin DNAzymes. In the presence of Hg2+, T–T mismatches between the two partial cDNA strands were stabilized by a T–Hg2+–T base pair, and can cause the G-rich sequences of the two oligonucleotides to associate to form a split G-quadruplex which is able to bind hemin to form the catalytically active G-quadruplex–hemin DNAzyme. This microbead-based ‘turn-on’ process allows the detection of Hg2+ in urine samples at concentrations as low as 0.5 pM. The relative standard deviation and recovery are 1.2–3.9 and 98.7–103.2%, respectively. The remarkable sensitivity for Hg2+ is mainly attributed to the enhanced mass transport ability that is inherent in homogeneous microbead-based assays. Compared with previous developments of intermolecular split G-quardruplex–hemin DNAzymes for the homogeneous detection of Hg2+ (the limit of detection was 19nM), a signal enhancement of ~1000 times is obtained when such an assay is performed on the surface of microbeads.

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


2020 ◽  
Vol 36 (8) ◽  
pp. 965-970
Author(s):  
Dandan WANG ◽  
Fenghua GENG ◽  
Yongxiang WANG ◽  
Yu MA ◽  
Guixin LI ◽  
...  

2012 ◽  
Vol 204-208 ◽  
pp. 4067-4070 ◽  
Author(s):  
Zhi Rong Zhou ◽  
Li Zhen Zhang

A simple kinetic spectrophotometric method was developed for the determination of trace amounts of Ru (III). The method is based on the reduction of spadns by sodium hypophosphite (NaH2PO2) in micellar media. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of spadns at 515 nm with a fixed-time method. The decrease in the absorbance of spadns is proportional to the concentration of Ru (III) in the range 0.40–10.0 μg/L with a fixed time of 2.5–7.0 min from the initiation of the reaction. The limit of detection is 0.12 μg/L Ru (III). The relative standard deviation for the determination of 0.10 and 0.20 μg/25mL Ru (III) was 2.3 % and 2.0 %, respectively. The method was applied to the determination of Ru (III) in some ores and metallurgy products.


2011 ◽  
Vol 8 (4) ◽  
pp. 1528-1535 ◽  
Author(s):  
F. Nekouei ◽  
Sh. Nekouei

A simple, fast, reproducible and sensitive method for the flotation- spectrophotometric determination of Al3+is reported. The apparent molar absorptivity (ε) of the ion associate was determined to be 8.35×104L mol-1cm-1. The calibration curve was linear in the concentration range of 1.0-50 ng mL-1of Al3+with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.621 ng mL. The relative standard deviation (RSD) at 10 and 30 ng mL-1of aluminium were 1.580 and 2.410% (n=7) respectively. The method was applied for measuring the amount of aluminium in water samples.


2014 ◽  
Vol 406 (18) ◽  
pp. 4535-4540 ◽  
Author(s):  
WeiJuan Yang ◽  
YaJuan Ruan ◽  
WeiHua Wu ◽  
PingPing Chen ◽  
LiangJun Xu ◽  
...  

2013 ◽  
Vol 800 ◽  
pp. 166-172
Author(s):  
Xiong Zhi Wu ◽  
Li Li ◽  
Fei Ping Li ◽  
Wen Ying Jin

A new sorbent (PAMAM4.0GASG) with gallic acid as functional group has been prepared based on G4.0 polyamidoamine dendrimer modified silica gel (PAMAM4.0SG) and characterized with FTIR. It was employed for selective separation, preconcentration and determination of lead in different samples by flame atomic absorption spectrometry (FAAS). Experimental conditions for effective separation and preconcentration of lead were optimized. The preconcentration factor reaches 200 for lead. The relative standard deviation (R.S.D.) under optimum conditions was 2.1% for 5.0 μg ml1 of Pb (II).The relative standard deviation (R.S.D.) was 2.1% for 5.0 μg ml1 of Pb (II). The limit of detection (LOD) of 0.081μg ml1 was achieved with a sample loading flow rate of 4.2 ml min1 and a 10 ml sample volume in the proposed method. The proposed column enrichment method was applied for the preconcentration/separation and determination of Pb (II) in tap water and river water samples successfully.


The Analyst ◽  
2014 ◽  
Vol 139 (24) ◽  
pp. 6502-6510 ◽  
Author(s):  
Sudesna Chakravarty ◽  
Dilip Saikia ◽  
Priyanka Sharma ◽  
Nirab Chandra Adhikary ◽  
Debajit Thakur ◽  
...  

A ‘turn on–off–on’ sensor for highly sensitive detection of ds DNA with an excellent ‘limit of detection’ is reported.


2010 ◽  
Vol 88 (6) ◽  
pp. 533-539 ◽  
Author(s):  
Larissa Zuppardo Lacerda Sabino ◽  
Daniele Cestari Marino ◽  
Horacio Dorigan Moya

A simple method was developed for determining microquantities of diltiazem, based on the reduction of copper(II) in buffered solution (pH 7.0) and the use of a micellar medium containing 4,4′-dicarboxy-2,2′-biquinoline acid. The copper(I) produced reacts with 4,4′-dicarboxy-2,2′-biquinoline acid and the complexes formed are spectrophotometrically measured at 558 nm. A typical calibration graph shows good linearity (r = 0.993) from 20 to 100 μg mL–1 of diltiazem. The limit of detection and relative standard deviation were calculated as 12 μg mL–1 (99% confidence level) and 3.5% (40 μg mL–1; n = 6), respectively, with a mean recovery value of 96.5% found in pharmaceutical dosages. A straightforward and effective way to recycle the reagents is addressed. The hazardous aspects of the Cu(I)–BCA reaction are presented as well.


2017 ◽  
Vol 33 (2) ◽  
pp. 133-135 ◽  
Author(s):  
Hualin YANG ◽  
Qinghua WU ◽  
Dongxiao SU ◽  
Yun WANG ◽  
Li LI ◽  
...  

Author(s):  
DILIP M CHAFLE

Objective: A simple, sensitive and precise visible spectrophotometric method has been proposed for the determination of cefpirome (CFM) in pure and oral injectable dosage form. Methods: A spectrophotometric method is based on the formation of stable red color product by oxidation of drugs by ferric nitrate and subsequent complexation with 1, 10 – phenanthroline with maximum absorption at 515 nm. Result: The red color complex was formed between Fe (II) and 1, 10 – phenanthroline after reduction of Fe (III) to Fe (II) in the presence of CFM drug. The phosphoric acid solution was used only for quenching the complex formation reaction. Several parameters such as the maximum wavelength of absorption, the volume of reagents, sequence of addition and effect of temperature and time of heating were optimized to achieve high sensitivity, stability and reproducible results. Under the optimum conditions, linear relationship with good correlation coefficient (0.994) was found over the concentration range from 0.20 to 6.00 μg/mL with a molar extinction coefficient 7.7813 × 104 L/mol/cm, limit of detection 0.2026 and limit of quantification 0.6141 μg/mL, respectively. Conclusion: The proposed method was evaluated statistically for linearity, accuracy, and precision in terms of standard deviation, percentage recovery, percentage error and relative standard deviation. The proposed method can be applied for the routine estimation of CFM in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document