Pyrolysis of aryl azides. III. Steric and electronic effects upon reaction rate

1975 ◽  
Vol 28 (10) ◽  
pp. 2147 ◽  
Author(s):  
LK Dyall

First-order rate constants have been measured for the pyrolysis of 15 phenyl azides in decalin solution. The rate for phenyl azide is increased only slightly by all para and many ortho substituents; in these cases Eact and ΔSact values are related linearly. ��� The very large rate increases when the ortho substituent is phenylazo, nitro, acetyl or benzoyl cannot be from steric or normal electronic effects and therefore identify a specific involvement of these groups in the transition state. This rate enhancement is reduced to scarcely significant levels by a 6-chloro or 6-methyl group in 2- nitrophenyl azide, but not by a 6-nitro group. These results raise doubts about recent claims1 to establish mechanism by measuring polar effects on rates of pyrolysis of azides in which steric effects might also operate.


1955 ◽  
Vol 8 (3) ◽  
pp. 322 ◽  
Author(s):  
B Breyer ◽  
HH Bauer ◽  
S Hacobian

The equation of the A.C. polarographic current for processes where the frequency of the alternating field is comparable with the rate of the electrode reaction is derived. Relative values of equilibrium rate constants of some first order electrode reactions are evaluated experimentally.



1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.



2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.



Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 384 ◽  
Author(s):  
Francesco Zaccaria ◽  
Roberta Cipullo ◽  
Andrea Correa ◽  
Peter H. M. Budzelaar ◽  
Vincenzo Busico ◽  
...  

Four Cl/Me substituted [ONNO] Zr-catalysts have been tested in ethene/α-olefin polymerization. Replacing electron-donating methyl with isosteric but electron-withdrawing chlorine substituents results in a significant increase of comonomer incorporation. Exploration of steric and electronic properties of the ancillary ligand by DFT confirm that relative reactivity ratios are mainly determined by the electrophilicity of the metal center. Furthermore, quantitative DFT modeling of propagation barriers that determine polymerization kinetics reveals that electronic effects observed in these catalysts affect relative barriers for insertion and a capture-like transition state (TS).



1999 ◽  
Vol 77 (5-6) ◽  
pp. 950-959 ◽  
Author(s):  
Oswald S Tee ◽  
Michael J Boyd

The effects of cyclodextrins (CDs) on the rate of nucleophilic attack on 1- and 2-naphthyl acetates (1-NA and 2-NA) in aqueous solution have been investigated. Analysis of the variation of the pseudo-first-order rate constants with [nucleophile] and [CD] affords rate constants for reaction of the nucleophiles with free ester (kN) and with ester bound to the CD (kcN). The reaction of 1-NA and 2-NA with the trifluoroethoxide anion is slowed down by β-CD as the ratios kcN/kN are 0.11 and 0.30, respectively. For reaction with the anion of 2-mercaptoethanol in the presence of α-CD, β-CD, "hydroxypropyl-β-CD" (hp-β-CD) and γ-CD, the reactivity ratios kcN/kN vary between 0.04 and 2.4, ranging from strong retardation to modest catalysis; the retardations arise with β-CD and hp-β-CD, which bind the esters strongly. By contrast, the attack of primary alkylamines is generally accelerated, and in many cases substantially so. For the aminolysis of 1-NA in the presence of β-CD, values of kcN/kN range from 7 to 460, assuming that free amine reacts with CD-bound ester. Alternatively, if the CD-catalyzed reaction involves free ester reacting with CD-bound amine, with rate constant kNc, the ratios kNc/kN vary from 43 to 140. Either way, there is appreciable catalysis of the aminolysis of 1-NA by β-CD. For the aminolysis of 2-NA, the effects are less dramatic: the ratios kcN/kN range from 0.19 to 17, and values of kNc/kN vary from 17 to 110. The reaction of 1-NA with n-hexylamine is also catalyzed by γ-CD. The variations of kinetic parameters with alkylamine chain length suggest that the CD-catalyzed aminolysis basically takes place by the attack of CD-bound amine on the free ester. However, there must be some stabilizing interactions between the aryl group of the ester and the CD during the reaction, since the transition state stabilization is different for 1-NA and 2-NA, as well for other esters.Key words: aminolysis, catalysis, cyclodextrin, ester cleavage, kinetics.



2007 ◽  
Vol 54 (2) ◽  
pp. 371-377
Author(s):  
Radosława Kuciel ◽  
Aleksandra Mazurkiewicz ◽  
Paulina Dudzik

Kinetics of guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular mass was investigated with enzyme activity measurements, capacity for binding an external hydrophobic probe, 1-anilinonaphtalene-8-sulfonate (ANS), accessibility of thiols to reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonate (MIANS) and ability to bind Congo red dye. Kinetic analysis was performed to describe a possible mechanism of hPAP unfolding and dissociation that leads to generation of an inactive monomeric intermediate that resembles, in solution of 1.25 M GdnHCl pH 7.5, at 20 degrees C, in equilibrium, a molten globule state. The reaction of hPAP inactivation in 1.25 M GdnHCl followed first order kinetics with the reaction rate constant 0.0715 +/- 0.0024 min(-1) . The rate constants of similar range were found for the pseudo-first-order reactions of ANS and Congo red binding: 0.0366 +/- 0.0018 min(-1) and 0.0409 +/- 0.0052 min(-1), respectively. Free thiol groups, inaccessible in the native protein, were gradually becoming, with the progress of unfolding, exposed for the reactions with DTNB and MIANS, with the pseudo-first-order reaction rate constants 0.327 +/- 0.014 min(-1) and 0.216 +/- 0.010 min(-1), respectively. The data indicated that in the course of hPAP denaturation exposure of thiol groups to reagents took place faster than the enzyme inactivation and exposure of the protein hydrophobic surface. This suggested the existence of a catalytically active, partially unfolded, but probably dimeric kinetic intermediate in the process of hPAP unfolding. On the other hand, the protein inactivation was accompanied by exposure of a hydrophobic, ANS-binding surface, and with an increased capacity to bind Congo red. Together with previous studies these results suggest that the stability of the catalytically active conformation of the enzyme depends mainly on the dimeric structure of the native hPAP.



2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.



1991 ◽  
Vol 56 (8) ◽  
pp. 1662-1670 ◽  
Author(s):  
Ivan Danihel ◽  
Falk Barnikol ◽  
Pavol Kristian

The reaction of para-substituted phenyl isocyanates with amines and alcohols was studied by stopped-flow method. The Hammett correlation obtained showed that the sensitivity of the above mentioned reactions toward substituent effects is the same as that of analogous reactions of phenyl isothiocyanates (ρ ~ 2). The rate constants of these reactions were found to be affected more by steric effects than by solvent effects. An one step multicentre mechanism with partial charges in transition state has been proposed for the title reactions.



1996 ◽  
Vol 49 (11) ◽  
pp. 1197 ◽  
Author(s):  
LK Dyall ◽  
JA Ferguson ◽  
TB Jarman

Our previous claim, that locking an ortho carbonyl group into a favourable conformation causes very large increases in the rate of thermolysis of aryl azides , has been reexamined. In 8-azido-5-methoxy-1-tetralone the rate advantage over an azide with a rotatable ortho acetyl group is estimated to be only 18-fold. Nevertheless, this factor is large enough to invalidate attempts to explain relative neighbouring group abilities on simple electronic effects alone. The very large rate increases we reported previously for 1-azidoacridin-g(10H)-one and 1-azidoanthracene-9,10-dione are partly due to favourable retention of conjugation in the transition state.



Sign in / Sign up

Export Citation Format

Share Document