scholarly journals Optimum time of sowing for rainfed winter chickpea with one-pass mechanised row-sowing: an example for small-holder farms in north-west Bangladesh

2014 ◽  
Vol 65 (7) ◽  
pp. 602 ◽  
Author(s):  
W. H. Vance ◽  
R. W. Bell ◽  
C. Johansen ◽  
M. E. Haque ◽  
A. M. Musa ◽  
...  

The time of sowing chickpea (Cicer arietinum L.) in the High Barind Tract of north-west Bangladesh is critical to crop success. To ensure adequate emergence and subsequent crop growth, chickpea relies on residual soil moisture stored in the profile after rice (Oryza sativa L.) cultivated in the preceding rainy season. With the development of mechanised, one-pass minimum tillage sowing, the time between rice harvest and chickpea sowing is decreased, and temperature constraints that limit biomass and/or pod formation and filling may be avoided. Minimum tillage may also limit evaporation from the soil surface compared with traditional, full cultivation procedures. The objective of this study was to identify the optimum sowing time to achieve adequate crop establishment and limit exposure of the chickpea crop to terminal drought and heat stress later in the growing season. Over three experimental seasons, chickpea sowing dates were spread from 22 November to 22 December. Soil water content, crop growth and temperature were monitored to determine the optimum sowing time. Over all seasons and sowing dates, the volumetric soil water content in the seedbed under minimum tillage remained within 17–34%, a range non-limiting for chickpea establishment in glasshouse and field experiments. Late planting (after 10 December) exposed seedlings to low temperatures (<15°C), which limited biomass formation and extended the vegetative growth phase into periods with high maximum temperatures (>35°C), resulting in unfilled pods and depressed grain yield. The preferred sowing time was determined to be 30 November to 10 December to reduce the risk of high temperatures and low soil water content during chickpea reproductive growth causing terminal heat and drought stress, respectively. Mechanised sowing in one operation allows farmers to optimise their time of sowing to match seed requirements for soil water at emergence and may assist farmers to avoid temperature stresses (both low and high) that constrain chickpea vegetative and reproductive growth.


2009 ◽  
Vol 60 (3) ◽  
pp. 280 ◽  
Author(s):  
Peter S. Searles ◽  
Diego A. Saravia ◽  
M. Cecilia Rousseaux

Several studies have evaluated many above-ground aspects of olive production, but essential root system characteristics have been little examined. The objective of our study was to evaluate root length density (RLD) and root distribution relative to soil water content in three commercial orchards (north-west Argentina). Depending on the orchard, the different drip emitter arrangements included either: (1) emitters spaced continuously at 1-m intervals along the drip line (CE-4; 4 emitters per tree); (2) 4 emitters per tree spaced at 1-m intervals, but with a space of 2 m between emitters of neighbouring trees (E-4); or (3) 2 emitters per tree with 4 m between emitters of neighbouring trees (E-2). All of the orchards included either var. Manzanilla fina or Manzanilla reina trees (5–8 years old) growing in sandy soils, although the specific characteristics of each orchard differed. Root length density values (2.5–3.5 cm/cm3) in the upper soil depth (0–0.5 m) were fairly uniform along the drip line in the continuous emitter (CE-4) orchard. In contrast, roots were more concentrated in the E-4 and E-2 orchards, in some cases with maximum RLD values of up to 7 cm/cm3. Approximately 70% of the root system was located in the upper 0.5 m of soil depth, and most of the roots were within 0.5 m of the drip line. For each of the three orchards, significant linear relationships between soil water content and RLD were detected based on 42 sampling positions that included various distances from the trunk and soil depths. Values of RLD averaged over the entire rooting zone and total tree root length per leaf area for the three orchards were estimated to range from 0.19 to 0.48 cm/cm3 and from 1.8 to 3.5 km/m2, respectively. These results should reduce the uncertainty associated with the magnitude of RLD values under drip irrigation as intensively managed olive orchards continue to expand in established and new growing regions.



2003 ◽  
Vol 43 (6) ◽  
pp. 539 ◽  
Author(s):  
G. M. Lodge ◽  
S. R. Murphy ◽  
S. Harden

An experimental site was established in 1997 on the North-West Slopes of New South Wales to further investigate the use of strategic grazing management to improve the persistence of phalaris (Phalaris aquatica cv.�Sirosa) and subsequent effects on animal production and soil water content. The pasture was sown in 1992 to Sirosa phalaris, subterranean clover (Trifolium subterraneum var. subterraneum cv. Seaton Park) and lucerne (Medicago sativa cv. Aurora). Four grazing treatments were applied in a randomised 3-replicate design. Treatments consisted of continuous grazing at 12.3 sheep/ha (C12 or control); continuous grazing at 6 sheep/ha (C6), and 2� spring and autumn strategies of either resting from grazing for 6 weeks in each season (SAR0), or reducing stocking rate from 12.3 to 4.0 sheep/ha (SAR4). Despite annual applications of fertiliser and high clover content, Sirosa phalaris herbage mass in plots continuously grazed at 12.3 sheep/ha declined from a mean of 3300 kg DM/ha in spring 1997 to < 700 kg DM/ha by May 1998. At the end of the study (February 2001), Sirosa mean herbage mass in these plots was 670 kg DM/ha and lower (P < 0.05) than for the other treatments (mean value 5400 kg DM/ha). These marked changes in herbage mass, and the degradation of the Sirosa-based pasture to an annual pasture by continuous grazing at 12.3 sheep/ha, were not generally reflected in either short-term animal production or substantial differences in soil water content. Wool production (kg/head) was not significantly different among treatments each year. Compared with continuous grazing at 12.3 sheep/ha, sheep liveweights were higher (P < 0.05) in plots continuously grazed at 6.1 sheep/ha from November 1997 to February 1999. However, from February 1999 to 2001, sheep liveweights in the 2 treatments with the highest Sirosa phalaris content were lower (P < 0.05) than those continuously grazed at 12.3 sheep/ha. Only the soil water content for the C6 and SAR4 treatments at 0–30�cm was significantly different to the control treatment, but the differences were predicted to be < 2.5 mm/year. In the root zone (0–90 cm), mean soil water content ranged from 159 to 309 mm (mean 220 mm), while plant available water (soil water content – soil water content at –1500 kPa) was a mean of 79 mm, ranging from 11 to 168 mm.





2012 ◽  
Vol 132 ◽  
pp. 129-138 ◽  
Author(s):  
S.N. Guto ◽  
N. de Ridder ◽  
K.E. Giller ◽  
P. Pypers ◽  
B. Vanlauwe


2015 ◽  
Vol 201 (3) ◽  
pp. 195-205 ◽  
Author(s):  
W. H. Vance ◽  
R. W. Bell ◽  
C. Johansen


1980 ◽  
Vol 16 (2) ◽  
pp. 137-148
Author(s):  
H. R. B. Hack

SUMMARYSesame was grown in four seasons in which differences in the distribution of the rains and treatments of pre-sowing flooding, irrigation during crop growth and surface drainage resulted in contrasts in soil water content and crop development. In wet years pre-sowing flooding, absence of surface drainage and premature irrigation gave 32–37% decreases in yield. In a season of low rainfall prevention of surface run-off and one later irrigation gave, in the absence of pre-sowing flooding, a 43% increase in yield over that from plots irrigated only at sowing and with surface drainage. Agronomic applications are discussed.



1974 ◽  
Vol 14 (66) ◽  
pp. 80 ◽  
Author(s):  
RG Fawcett ◽  
OG Carter

A study was made of the effects of plant density, time-of-sowing and level of fallow water on profile changes in soil water content and potential during the growing season of spring wheat. The pattern of soil moisture extraction was affected by all treatments although water depletion occurred chiefly in the 0-90 cm zone. The results are discussed in relation to limitations of a simple soil water budget model and to wheat cropping on the north-west slopes and plains of New South Wales.



2016 ◽  
Vol 64 (2) ◽  
pp. 150-159 ◽  
Author(s):  
Éva Lehoczky ◽  
Mariann Kamuti ◽  
Nikolett Mazsu ◽  
Renáta Sándor

AbstractEspecially during early developmental stages, competition with weeds can reduce crop growth and have a serious effect on productivity. Here, the effects of interactions between soil water content (SWC), nutrient availability, and competition from weeds on early stage crop growth were investigated, to better understand this problem. Field experiments were conducted in 2013 and 2014 using long-term study plots on loam soil in Hungary. Plots of maize (Zea maysL.) and a weed-maize combination were exposed to five fertilization treatments. SWC was observed along the 0–80 cm depth soil profile and harvested aboveground biomass (HAB) was measured.Significant differences were found between SWC in maize and maize-weed plots. In all treatments, measured SWC was most variable in soil depths of up to 50 cm, and at the 8–10 leaves (BBCH19) growth stage of the crop. The greatest depletion of SWC was detected within PK treatments across the entire soil profile and under both vegetation types, with depletion also considerable under NPK and NP treatments. Biomass growth was significantly influenced by weeds in treated plots between the BBCH 13 and 19 phenological stages, but water availability did not hamper growth rates in non-fertilized conditions. These findings suggest that, at early stages of crop growth, SWC model simulations need to include better characterisation of depth- and structure-dependent soil water uptake by vegetation.



2017 ◽  
Vol 9 (11) ◽  
pp. 88
Author(s):  
E. T. Sebetha ◽  
A. T. Modi

Soil water loss through evaporation plays a role on low crop productivity and this is due to poor cropping systems and soil surface coverage. The study was carried out at three locations of North-West province of South Africa, which were Potchefstroom, Taung and Rustenburg during 2011/12 and 2012/13 planting seasons. The experimental design was a factorial experiment laid out in a randomised complete block design (RCBD) with three replicates. The experiment consisted of five cropping systems, which were monocropping cowpea, monocropping maize, cowpea followed by maize in rotation, maize followed by cowpea in rotation and intercropping maize-cowpea. The three crop growth stages compared in this study were before tasselling/flowering, during tasselling/pod formation and during physiological maturity of maize and cowpea. Soil was sampled for the 0-0.15, 0.15-0.3, 0.3-0.6 and 0.6-0.9 m depth increments and soil water content determined using the Gravimetric method. The crop growth stage before tasselling/flowering in maize/cowpea had significantly (P < 0.05) higher water content of 10.2, 10.8, 12.5 and 13.3% at the depth of 0-0.15, 0.15-0.3, 0.3-0.6 and 0.6-0.9 m respectively. Soil collected at Rustenburg and Potchefstroom had significantly (P < 0.05) higher water content of 13.5 and 10.2; 15.9 and 10.9; 18.3 and 12.8; 18.4 and 14.5% at the depths of 0-0.15, 0.15-0.3, 0.3-0.6 and 0.6-0.9 m respectively. Monocropping cowpea plots had significantly (P < 0.05) higher water content of 12.4% than other cropping systems at the soil depth of 0.3-0.6 m. Monocropping plots of cowpea had the ability to hold soil water and this depends on the type of cowpea cultivar and canopy cover. The stage before tasselling/flowering of maize-cowpea (V10/Vn) was found to have high soil water content. Soil water content differs across locations due to different soil physical properties.





Sign in / Sign up

Export Citation Format

Share Document