Molecular basis of multiple resistance to herbicides inhibiting acetyl-CoA carboxylase and acetolactate synthase in American sloughgrass (Beckmannia syzigachne) from China

2016 ◽  
Vol 67 (11) ◽  
pp. 1208 ◽  
Author(s):  
Lang Pan ◽  
Haitao Gao ◽  
Han Wu ◽  
Liyao Dong

American sloughgrass (Beckmannia syzigachne Steud.) is a problematic grass that is widely distributed in wheat and oilseed rape fields in China. The herbicides fenoxaprop-P-ethyl and mesosulfuron-methyl failed to control B. syzigachne JCWJ-R populations collected from a wheat field in Jiangsu Province. Dose-response experiments showed that JCWJ-R was resistant to the acetyl-CoA carboxylase (ACCase) inhibitors fenoxaprop-P-ethyl (33.8-fold), haloxyfop-R-methyl (12.7-fold), clethodim (7.8-fold) and pinoxaden (11.6-fold), and to the acetolactate synthase (ALS) inhibitors mesosulfuron-methyl (15.9-fold), pyroxsulam (17.6-fold), flucarbazone-Na (10.7-fold) and imazethapyr (7-fold). Resistance to ALS inhibitors was due to a Pro-197-Ser mutation in the ALS gene and resistance to ACCase inhibitors was due to an Ile-1781-Leu mutation in the ACCase gene. A derived cleaved amplified polymorphic sequence method was developed to detect the ALS mutation in B. syzigachne. This was combined with a previously established method to detect Ile-1781-Leu, and the mutation frequency and homozygous mutation rates in the JCWJ-R population were determined. The evolution of multiple resistance to ACCase and ALS inhibitors in this B. syzigachne population indicated that alternative methods should be developed to control resistant weeds.

2011 ◽  
Vol 25 (4) ◽  
pp. 659-666 ◽  
Author(s):  
Aman Chandi ◽  
Alan C. York ◽  
David L. Jordan ◽  
Josh B. Beam

Diclofop-resistant Italian ryegrass is widespread in southwestern North Carolina, and growers have resorted to using acetolactate synthase (ALS) inhibitors such as mesosulfuron and pyroxsulam to control this weed in wheat. In the spring of 2007, mesosulfuron failed to control Italian ryegrass in several wheat fields. Seed were collected from six fields in two counties and greenhouse studies were conducted to determine response to mesosulfuron and the acetyl-CoA carboxylase (ACCase) inhibitors diclofop and pinoxaden. All populations were resistant to diclofop and cross-resistant to pinoxaden. Five of the six populations were resistant to diclofop, pinoxaden, and mesosulfuron. An additional study with two biotypes confirmed cross-resistance to the ALS inhibitors imazamox, mesosulfuron, and pyroxsulam. Resistance to mesosulfuron was heritable.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1272
Author(s):  
Vijaya Bhaskar Alwarnaidu Vijayarajan ◽  
Patrick D Forristal ◽  
Sarah K Cook ◽  
David Schilder ◽  
Jimmy Staples ◽  
...  

Understanding the resistance spectrum and underlying genetic mechanisms is critical for managing herbicide-resistant populations. In this study, resistance to acetyl CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors was investigated in four suspected resistant populations of Alopecurus myosuroides (ALOMY-001 to ALOMY-004) and Lolium multiflorum (LOLMU-001 to LOLMU-004), collected from cereal production fields in Ireland. Glasshouse assays with three ALOMY-active herbicides [propaquizafop, cycloxydim (ACCase) and mesosulfuron + iodosulfuron (ALS)] or five LOLMU-active herbicides [pinoxaden, propaquizafop, cycloxydim (ACCase) and mesosulfuron + iodosulfuron, pyroxsulam (ALS)], and target-site resistance mechanism studies, based on pyrosequencing, were carried out in each of those populations. For A. myosuroides, Ile-1781-Leu ACCase mutation contributed to propaquizafop and cycloxydim resistance (shoot dry weight GR50 resistance factor (RF) = 7.5–35.5) in all ALOMY populations, and the independent Pro-197-Thr or Pro-197-Ser ALS mutation contributed to mesosulfuron + iodosulfuron resistance (RF = 3.6–6.6), in ALOMY-002 to ALOMY-004. Most of the analyzed plants for these mutations were homo/heterozygous combinations or only heterozygous. For L. multiflorum, phenotypic resistance to mesosulfuron + iodosulfuron (RF = 11.9–14.6) and pyroxsulam (RF = 2.3–3.1) was noted in all LOLMU populations, but the Pro-197-Gln or Pro-197-Leu ALS mutation (mostly in homozygous status) was identified in LOLMU-001, LOLMU-002 and LOLMU-004 only. Additionally, despite no known ACCase mutations in any LOLMU populations, LOLMU-002 survived pinoxaden and propaquizafop application (RF = 3.4 or 1.3), and LOLMU-003 survived pinoxaden (RF = 2.3), suggesting the possibility of non-target-site resistance mechanisms for ACCase and/or ALS resistance in these populations. Different resistance levels, as evidenced by a reduction in growth as dose increased above field rates in ALOMY and LOLMU, were due to variations in mutation rate and the level of heterozygosity, resulting in an overall resistance rating of low to moderate. This is the first study confirming cross- and multiple resistance to ACCase- and ALS-inhibiting herbicides, highlighting that resistance monitoring in A. myosuroides and L. multiflorum in Ireland is critical, and the adoption of integrated weed management strategies (chemical and non-chemical/cultural strategies) is essential.


2018 ◽  
Vol 36 ◽  
Author(s):  
E. XAVIER ◽  
M.M. TREZZI ◽  
M.C. OLIVEIRA ◽  
R.A. VIDAL ◽  
A.P. BRUSAMARELLO

ABSTRACT: The characteristics of multiple resistance in Euphorbia heterophylla biotypes to herbicides that are inhibitors of ALS (Acetolactate synthase) and PPO (Protoporphyrinogen oxidase) and their responsible mechanisms are still not completely elucidated. The objectives of this study were to identify cross-resistance to herbicides from different chemical groups of ALS inhibitors (imidazolinones, sulfonylureas, pyrimidyl benzoates and sulfonanilides) and also PPO inhibitors (diphenylethers, phthalamides, oxadiazoles, triazolinones and pyrimidinediones) in E. heterophylla biotypes with multiple resistance to these herbicides; to analyze whether the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) constitute mechanisms that are responsible for the resistance to PPO inhibitors. Initially, the response to doses of herbicides from these different chemical groups was determined, using doses below and above the one recommended for the species. The control of E. heterophylla was determined, estimating the required doses for a 50 and 80% control reduction and calculating the resistance factors. The constitutive and induced activities of the SOD and POD enzymes were also determined. The results confirmed cross-resistance for all chemical groups of ALS and PPO inhibitors in the Bom Sucesso do Sul and Vitorino biotypes. The constitutive and induced activities of the SOD and POD enzymes were superior in plants from the E. heterophylla biotypes Vitorino and Bom Sucesso do Sul, contributing to their resistance to PPO inhibiting herbicides.


2017 ◽  
Vol 31 (3) ◽  
pp. 470-476 ◽  
Author(s):  
James T. Brosnan ◽  
Jose J. Vargas ◽  
Gregory K. Breeden ◽  
Sarah L. Boggess ◽  
Margaret A. Staton ◽  
...  

Methiozolin is an isoxazoline herbicide being investigated for selective POST annual bluegrass control in managed turfgrass. Research was conducted to evaluate methiozolin efficacy for controlling two annual bluegrass phenotypes with target-site resistance to photosystem II (PSII) or enolpyruvylshikimate-3-phosphate synthase (EPSPS)-inhibiting herbicides (i.e., glyphosate), as well as phenotypes with multiple resistance to microtubule and EPSPS or PSII and acetolactate synthase (ALS)-inhibiting herbicides. All resistant phenotypes were established in glasshouse culture along with a known herbicide-susceptible control and treated with methiozolin at 0, 125, 250, 500, 1000, 2000, 4000, or 8000 g ai ha−1. Methiozolin effectively controlled annual bluegrass with target-site resistance to inhibitors of EPSPS, PSII, as well as multiple resistance to EPSPS and microtubule inhibitors. Methiozolin rates required to reduce aboveground biomass of these resistant phenotypes 50% (GR50 values) were not significantly different from the susceptible control, ranging from 159 to 421 g ha−1. A phenotype with target-site resistance to PSII and ALS inhibitors was less sensitive to methiozolin (GR50=862 g ha−1) than a susceptible phenotype (GR50=423 g ha−1). Our findings indicate that methiozolin is an effective option for controlling select annual bluegrass phenotypes with target-site resistance to several herbicides.


2013 ◽  
Vol 59 (No. 9) ◽  
pp. 432-437 ◽  
Author(s):  
K. Adamczewski ◽  
R. Kierzek ◽  
K. Matysiak

The aim of the study was to collect seeds of wild oat from the fields where, in spite of the applied herbicides, the weed is very poorly controlled, and to determine under greenhouse conditions if any resistant biotypes are present. In the years 2008–2011, 34 samples of wild oat were collected from fields where the weed was poorly controlled. The biotypes were analyzed in greenhouse experiments to determine if they are resistant to herbicides. Among five resistant biotypes three of them (R3, R4 and R5) were resistant only to iodosulfuron and mesosulfuron, and biotype R2 – only to propoxycarbazone-sodium. Biotype R1 exhibited multiple resistance to iodosulfuron + mesosulfuron and pinoxaden. The use of sulfometuron proves that the mechanism of resistance of two biotypes of wild oat (R1 and R4) to acetolactate synthase inhibitors is associated with target-site mutation. The curve of biotypes R3 and R5 controlled with iodosulfuron + mesosulfuron shows a relatively low resistance index and control of those biotypes with sulfometuron indicates a metabolic resistance.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 494-504 ◽  
Author(s):  
Vince M. Davis ◽  
Greg R. Kruger ◽  
Jeff M. Stachler ◽  
Mark M. Loux ◽  
William G. Johnson

Horseweed populations with mixtures of biotypes resistant to glyphosate and acetolactate synthase (ALS)–inhibiting herbicides as well as biotypes with multiple resistance to glyphosate + ALS-inhibiting herbicides have been documented in Indiana and Ohio. These biotypes are particularly problematic because ALS-inhibiting herbicides are commonly tank mixed with glyphosate to improve postemergence horseweed control in soybean. The objective of this research was to characterize the growth and seed production of horseweed populations with resistance to glyphosate or ALS-inhibiting herbicides, and multiple resistance to glyphosate + ALS-inhibiting herbicides. A four-herbicide by four-horseweed population factorial field experiment was conducted in the southeastern region of Indiana in 2007 and repeated in 2008. Four horseweed populations were collected from Indiana or Ohio and confirmed resistant to glyphosate, ALS inhibitors, both, or neither in greenhouse experiments. The four herbicide treatments were untreated, 0.84 kg ae ha−1glyphosate, 35 g ai ha−1cloransulam, and 0.84 kg ae ha−1glyphosate + 35 g ai ha−1cloransulam. Untreated plants from horseweed populations that were resistant to glyphosate, ALS-inhibiting, or multiple glyphosate + ALS-inhibiting herbicides produced similar amounts of biomass and seed compared to populations that were susceptible to those herbicides or combination of herbicides. Furthermore, aboveground shoot mass and seed production did not differ between treated and untreated plants.


2016 ◽  
Vol 34 (3) ◽  
pp. 575-580 ◽  
Author(s):  
A.P. BRUSAMARELLO ◽  
P.H. OLIVEIRA ◽  
M.M. TREZZI ◽  
E. XAVIER ◽  
E.D. DALOSTO

ABSTRACT Weed resistance to herbicides is a major global problem for agriculture. In recent years, the increased use of herbicides, without proper planning, has led to a large increase in the number of cases of weed biotypes that are resistant to one or more herbicide mechanism of action. Wild poinsettia biotypes (Euphorbia heterophylla), discovered in the State of Paraná, with resistance to herbicides that inhibit protoporphyrinogen oxidase (PROTOX) and acetolactate synthase (ALS), are the first case to exhibit multiple resistance in Brazil. This study analyzed the genetic inheritance of PROTOX inhibiting herbicide resistance in E. heterophylla. Crosses were conducted between biotypes that were susceptible (female parent) and those carrying multiple resistance to ALS and PROTOX inhibitors (male parent) to obtain the F1 generation. Backcrosses were performed (RC1 and RC2) and the F1 generation was advanced to F2. F1, F2, RC1, RC2 generation plants and their parents were subjected to applications of the herbicide fomesafen (250 g i.a. ha-1). The observed frequencies in the F2 generation were not different from the expected frequency of 3:1. All RC2 individuals were resistant, while the RC1 population showed a 1:1 segregation, which would be expected when a single gene controls the trait. Thus, it can be inferred that E. heterophylla resistance to PROTOX-inhibiting herbicides is conditioned by a single and dominant nuclear gene.


2018 ◽  
Vol 221 (4) ◽  
pp. 2112-2122 ◽  
Author(s):  
Satoshi Iwakami ◽  
Yoshitaka Kamidate ◽  
Takuya Yamaguchi ◽  
Masumi Ishizaka ◽  
Masaki Endo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document