Wheat grain-yield response to lime application: relationships with soil pH and aluminium in Western Australia

2019 ◽  
Vol 70 (4) ◽  
pp. 295 ◽  
Author(s):  
Geoffrey Anderson ◽  
Richard Bell

Soil acidity, or more specifically aluminium (Al) toxicity, is a major soil limitation to growing wheat (Triticum aestivum L.) in the south of Western Australia (SWA). Application of calcium carbonate (lime) is used to correct Al toxicity by increasing soil pH and decreasing soluble soil Al3+. Soil testing using a 0.01 m calcium chloride (CaCl2) solution can measure both soil pH (pHCaCl2) and soil Al (AlCaCl2) for recommending rates of lime application. This study aimed to determine which combination of soil pHCaCl2 or soil AlCaCl2 and sampling depth best explains the wheat grain-yield increase (response) when lime is applied. A database of 31 historical lime experiments was compiled with wheat as the indicator crop. Wheat response to lime application was presented as relative yield percentage (grain yield for the no-lime treatment divided by the highest grain yield achieved for lime treatments × 100). Soil sampling depths were 0–10, 10–20 and 20–30 cm and various combinations of these depths. For evidence that lime application had altered soil pHCaCl2, we selected the change in the lowest pHCaCl2 value of the three soil layers to a depth of 30 cm as a result of the highest lime application (ΔpHmin). When ΔpHmin <0.3, the lack of grain-yield response to lime suggested that insufficient lime had leached into the 10–30 cm soil layer to remove the soil Al limitation for these observations. Also, under high fallow-season rainfall (228 and 320 mm) and low growing-season rainfall (GSR) (<140 mm), relative yield was lower for the measured level of soil AlCaCl2 than in the other observations. Hence, after excluding observations with ΔpHmin <0.3 or GSR <140 mm (n = 19), soil AlCaCl2 provided a better definition of the relationship between soil test and wheat response (r2 range 0.48–0.74) than did soil pHCaCl2 (highest r2 0.38). The critical value (defined at relative yield = 90%) ranged from 2.5 mg Al kg–1 (for soil Al calculated according to root distribution by depth within the 0–30 cm layer) to 4.5 mg Al kg–1 (calculated from the highest AlCaCl2 value from the three soil layers to 30 cm depth). We conclude that 0.01 m CaCl2 extractable Al in the 0–30 cm layer will give the more accurate definition of the relationship between soil test and wheat response in SWA.

1999 ◽  
Vol 50 (2) ◽  
pp. 191 ◽  
Author(s):  
R. L. Aitken ◽  
T. Dickson ◽  
K. J. Hailes ◽  
P. W. Moody

Split-plot field experiments, with main plots consisting of various rates of calcitic lime and single rates of dolomite, gypsum, and calcium silicate, were conducted at each of 4 sites to determine the effect of band-applied magnesium (Mg) on maize yield. The sites were acidic with pH values of 4.5, 4.9, 5.0, and 6.1 and exchangeable Mg levels of 0.16, 0.10, 6.0, and 2.0 cmol(+)/kg, respectively. Magnesium significantly (P < 0.05) increased grain yield at the 2 low-Mg sites, both of which were strongly acidic and responsive to lime application, but the nature of the Mg × lime interaction was different at each of the 2 responsive sites. The absence of a response to Mg at lime rates ≥1 t/ha at one responsive site was attributed to the presence of small amounts of Mg in the calcitic lime and/or an improved root environment enabling better exploitation of the soil Mg. Supplying a readily soluble source of Mg in the fertiliser band also resulted in increased grain yield in the gypsum, dolomite, and calcium silicate treatments at the 2 Mg-responsive sites. When the initial soil pH was strongly acidic, exchangeable Mg levels increased with increasing lime rate, suggesting that the small quantities of Mg that occur in the majority of liming materials may be of importance with respect to Mg nutrition. In contrast, gypsum application exacerbated the Mg deficiency at one site. The relationship between grain yield response and soil Mg level across all sites indicated that above an exchangeable Mg level of 0.27 cmol(+)/kg there would be little likelihood of a response to applied Mg.


1997 ◽  
Vol 37 (5) ◽  
pp. 571 ◽  
Author(s):  
D. R. Coventry ◽  
W. J. Slattery ◽  
V. F. Burnett ◽  
G. W. Ganning

Summary. A long-term experiment in north-eastern Victoria has been regularly monitored for wheat yield responses to a range of lime and fertiliser treatments, and the soil sampled for acidity attributes. Substantial grain yield increases have been consistently obtained over a period of 12 years with a single lime application. Lime applied at 2.5 t/ha in 1980 was still providing yield increases of 24% with an acid-tolerant wheat (Matong, 1992 season) and 79% with an acid-sensitive wheat (Oxley, 1993 season) relative to no lime treatment. The 2 wheat cultivars responded differently to phosphorus fertiliser, with the acid-sensitive wheat less responsive to phosphorus fertiliser in the absence of lime. The use of a regular lime application applied as a fertiliser (125 kg lime/ha) with the wheat seed gave only a small grain yield increase (8% Matong, 16% Oxley), despite 1 t/ha of lime applied over the 12-year period. Liming the soil at a rate of 2.5 t/ha (1980) initially raised the soil pH by about 1.0 unit and removed most soluble aluminium (0–10 cm). However, after 12 years of crop–pasture rotation after the initial 2.5 t lime/ha treatment the soil pH had declined by 0.7 of a pH unit and exchangeable aluminium was substantially increased, almost to levels prior to the initial application of lime. Given the continued yield responsiveness obtained following the initial application of lime, this practice, rather than regular applications of small amounts of lime, is recommended for wheat production on strongly acidic (pHw < 5.5) soils in south-eastern Australia.


2013 ◽  
Vol 64 (5) ◽  
pp. 435 ◽  
Author(s):  
C. B. Dyson ◽  
M. K. Conyers

Comprehensive data on grain yield responsiveness to applications of the major nutrients nitrogen, phosphorus, potassium, sulfur in Australian cropping experiments have been assembled in the Better Fertiliser Decisions for Cropping (BFDC) National Database for scrutiny by the BFDC Interrogator. The database contains the results of individual field experiments on nutrient response that need to be collectively integrated into a model that predicts probable grain yield response from soil tests. The potential degree of grain yield responsiveness (relative yield, RY%) is related to nutrient concentration in the soil (soil test value, STV) across a range of experimental sites and conditions for each nutrient. The RY% is defined as RY = Y0/Ymax *100, where Y0 is the yield without applied nutrient, and Ymax is the yield which could be attained through adequate application of the nutrient, given sufficiency of all other nutrients. The raw data for RY and STV are transformed so that a linear regression model can be applied. The BFDC Interrogator uses the arcsine-log calibration curve (ALCC) algorithm to estimate a critical soil test value (CSTV) for a given nutrient. The CSTV is defined as the value that would, on average for the broad agronomic circumstances of the incoming crop, lead to a specified percentage of Ymax (e.g. RY = 90%) without any application of that nutrient. This paper describes the ALCC algorithm, which has been developed to ensure that such estimated CSTVs, with safeguards, are reliable and to as high a precision as is realistic.


2000 ◽  
Vol 80 (1) ◽  
pp. 205-216 ◽  
Author(s):  
D. Spaner ◽  
D. B. McKenzie ◽  
A. G. Todd ◽  
A. Simms ◽  
M. MacPherson ◽  
...  

Livestock farmers in Newfoundland use most available land for forages. The local production of feed grains is negligible and expensive imported feed accounts for almost one half of farm operating expenses. Here, our objectives were to develop basic agronomic principles of mechanized spring grain production and to demonstrate grain production techniques to the Newfoundland farming community. Barley seeding date trials were conducted at five environments in eastern and western Newfoundland between 1996 and 1998. The relationship between soil pH and barley grain yield was explored through grid soil and yield sampling in two large fields in both 1997 and 1998. Between 1993 and 1998 over 20 livestock farmers throughout Newfoundland cooperated with the Newfoundland Grain Project, growing and comparing varieties of barley (Hordeum vulgare L.), spring wheat (Triticum aestivum L.) and oats (Avena sativa L.) on their farms. Late seeding of barley in the spring/summer resulted in linear grain yield reductions. A levelling off of yield response did not occur at greater cumulated growing degree days, possibly because optimum accumulation for maximum barley yield potential does not occur in Newfoundland. Resistant regression lines, describing the relationship between soil pH and grain yield were developed for two barley varieties, indicated that Sterling reached a yield plateau around a soil pH 6 in 1998, while Chapais reached a yield plateau at soil pH 5.4 in 1997. Barley is well adapted to Newfoundland growing conditions, normally providing a high-yielding, mature grain of good feeding quality. Farmers collaborating with the project were generally impressed with the potential of growing barley for grain and some are now regularly doing so. Key words: Seeding date; barley; wheat; oats; precision farming research


2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


2019 ◽  
Vol 35 (1) ◽  
pp. 63-70
Author(s):  
Emmanuel Byamukama ◽  
Shaukat Ali ◽  
Jonathan Kleinjan ◽  
Dalitso N. Yabwalo ◽  
Christopher Graham ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 195 ◽  
Author(s):  
Timothy Boring ◽  
Kurt Thelen ◽  
James Board ◽  
Jason De Bruin ◽  
Chad Lee ◽  
...  

To determine if current university fertilizer rate and timing recommendations pose a limitation to high-yield corn (Zea mays subsp. mays) and soybean (Glycine max) production, this study compared annual Phosphorous (P) and Potassium (K) fertilizer applications to biennial fertilizer applications, applied at 1× and 2× recommended rates in corn–soybean rotations located in Minnesota (MN), Iowa (IA), Michigan (MI), Arkansas (AR), and Louisiana (LA). At locations with either soil test P or K in the sub-optimal range, corn grain yield was significantly increased with fertilizer application at five of sixteen site years, while soybean seed yield was significantly increased with fertilizer application at one of sixteen site years. At locations with both soil test P and K at optimal or greater levels, corn grain yield was significantly increased at three of thirteen site years and soybean seed yield significantly increased at one of fourteen site years when fertilizer was applied. Site soil test values were generally inversely related to the likelihood of a yield response from fertilizer application, which is consistent with yield response frequencies outlined in state fertilizer recommendations. Soybean yields were similar regardless if fertilizer was applied in the year of crop production or before the preceding corn crop. Based on the results of this work across the US and various yield potentials, it was confirmed that the practice of applying P and K fertilizers at recommended rates biennially prior to first year corn production in a corn–soybean rotation does not appear to be a yield limiting factor in modern, high management production systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kelly A. Nelson ◽  
Peter P. Motavalli ◽  
William E. Stevens ◽  
John A. Kendig ◽  
David Dunn ◽  
...  

Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S), 0-0-25-17, 3-18-18-0, and 5-0-20-13) and additive rates (2.2, 8.8, and 17.6 kg K ha−1) on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1in a low-yield year (2005) depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K(P=0.03), S(P=0.03), B(P=0.0001), and Cu(P=0.008)concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.


2015 ◽  
Vol 66 (1) ◽  
pp. 23 ◽  
Author(s):  
Craig Scanlan ◽  
Ross Brennan ◽  
Gavin A. Sarre

Changes in soil fertility following long periods of crop production in the south-west of Western Australia (WA) may have implications for phosphorus (P) fertiliser recommendations for wheat production. When the sandy soils of the region were first cleared for agricultural production, they were typically marginally acidic to neutral, with soil extractable-P levels inadequate for crop production. Recent surveys have shown that 87% of soils in south-west WA exceed the critical soil extractable-P level required for 90% of maximum grain yield, and ~70% of soils have a surface-soil pHCa <5.5. There has also been a shift towards a high frequency of wheat in the crop sequence. We conducted a field experiment to begin to quantify the importance of the interactions between soil pH and crop sequence on wheat response to P fertiliser. For grain yield, the magnitude of the response was greatest for rate of P applied, followed by lime treatment and then crop sequence. There were no interactions between these treatments. Our analysis of the grain-yield response to rates of P fertiliser showed no significant difference between the shape of the grain-yield response curve for treatments with and without lime. However, we did find a significant interaction between lime treatment and rate of P fertiliser applied for shoot P concentration and that soil P was more plant-available in the +lime than the –lime treatment. There is justification for making realistic adjustments to yield potential based on soil pH or crop sequence, although further work is required to determine whether the shape of the grain-yield response curve varies with these two factors.


Sign in / Sign up

Export Citation Format

Share Document