Response of field-grown maize to applied magnesium in acidic soils in north-eastern Australia

1999 ◽  
Vol 50 (2) ◽  
pp. 191 ◽  
Author(s):  
R. L. Aitken ◽  
T. Dickson ◽  
K. J. Hailes ◽  
P. W. Moody

Split-plot field experiments, with main plots consisting of various rates of calcitic lime and single rates of dolomite, gypsum, and calcium silicate, were conducted at each of 4 sites to determine the effect of band-applied magnesium (Mg) on maize yield. The sites were acidic with pH values of 4.5, 4.9, 5.0, and 6.1 and exchangeable Mg levels of 0.16, 0.10, 6.0, and 2.0 cmol(+)/kg, respectively. Magnesium significantly (P < 0.05) increased grain yield at the 2 low-Mg sites, both of which were strongly acidic and responsive to lime application, but the nature of the Mg × lime interaction was different at each of the 2 responsive sites. The absence of a response to Mg at lime rates ≥1 t/ha at one responsive site was attributed to the presence of small amounts of Mg in the calcitic lime and/or an improved root environment enabling better exploitation of the soil Mg. Supplying a readily soluble source of Mg in the fertiliser band also resulted in increased grain yield in the gypsum, dolomite, and calcium silicate treatments at the 2 Mg-responsive sites. When the initial soil pH was strongly acidic, exchangeable Mg levels increased with increasing lime rate, suggesting that the small quantities of Mg that occur in the majority of liming materials may be of importance with respect to Mg nutrition. In contrast, gypsum application exacerbated the Mg deficiency at one site. The relationship between grain yield response and soil Mg level across all sites indicated that above an exchangeable Mg level of 0.27 cmol(+)/kg there would be little likelihood of a response to applied Mg.

2019 ◽  
Vol 70 (4) ◽  
pp. 295 ◽  
Author(s):  
Geoffrey Anderson ◽  
Richard Bell

Soil acidity, or more specifically aluminium (Al) toxicity, is a major soil limitation to growing wheat (Triticum aestivum L.) in the south of Western Australia (SWA). Application of calcium carbonate (lime) is used to correct Al toxicity by increasing soil pH and decreasing soluble soil Al3+. Soil testing using a 0.01 m calcium chloride (CaCl2) solution can measure both soil pH (pHCaCl2) and soil Al (AlCaCl2) for recommending rates of lime application. This study aimed to determine which combination of soil pHCaCl2 or soil AlCaCl2 and sampling depth best explains the wheat grain-yield increase (response) when lime is applied. A database of 31 historical lime experiments was compiled with wheat as the indicator crop. Wheat response to lime application was presented as relative yield percentage (grain yield for the no-lime treatment divided by the highest grain yield achieved for lime treatments × 100). Soil sampling depths were 0–10, 10–20 and 20–30 cm and various combinations of these depths. For evidence that lime application had altered soil pHCaCl2, we selected the change in the lowest pHCaCl2 value of the three soil layers to a depth of 30 cm as a result of the highest lime application (ΔpHmin). When ΔpHmin &lt;0.3, the lack of grain-yield response to lime suggested that insufficient lime had leached into the 10–30 cm soil layer to remove the soil Al limitation for these observations. Also, under high fallow-season rainfall (228 and 320 mm) and low growing-season rainfall (GSR) (&lt;140 mm), relative yield was lower for the measured level of soil AlCaCl2 than in the other observations. Hence, after excluding observations with ΔpHmin &lt;0.3 or GSR &lt;140 mm (n = 19), soil AlCaCl2 provided a better definition of the relationship between soil test and wheat response (r2 range 0.48–0.74) than did soil pHCaCl2 (highest r2 0.38). The critical value (defined at relative yield = 90%) ranged from 2.5 mg Al kg–1 (for soil Al calculated according to root distribution by depth within the 0–30 cm layer) to 4.5 mg Al kg–1 (calculated from the highest AlCaCl2 value from the three soil layers to 30 cm depth). We conclude that 0.01 m CaCl2 extractable Al in the 0–30 cm layer will give the more accurate definition of the relationship between soil test and wheat response in SWA.


1997 ◽  
Vol 37 (5) ◽  
pp. 571 ◽  
Author(s):  
D. R. Coventry ◽  
W. J. Slattery ◽  
V. F. Burnett ◽  
G. W. Ganning

Summary. A long-term experiment in north-eastern Victoria has been regularly monitored for wheat yield responses to a range of lime and fertiliser treatments, and the soil sampled for acidity attributes. Substantial grain yield increases have been consistently obtained over a period of 12 years with a single lime application. Lime applied at 2.5 t/ha in 1980 was still providing yield increases of 24% with an acid-tolerant wheat (Matong, 1992 season) and 79% with an acid-sensitive wheat (Oxley, 1993 season) relative to no lime treatment. The 2 wheat cultivars responded differently to phosphorus fertiliser, with the acid-sensitive wheat less responsive to phosphorus fertiliser in the absence of lime. The use of a regular lime application applied as a fertiliser (125 kg lime/ha) with the wheat seed gave only a small grain yield increase (8% Matong, 16% Oxley), despite 1 t/ha of lime applied over the 12-year period. Liming the soil at a rate of 2.5 t/ha (1980) initially raised the soil pH by about 1.0 unit and removed most soluble aluminium (0–10 cm). However, after 12 years of crop–pasture rotation after the initial 2.5 t lime/ha treatment the soil pH had declined by 0.7 of a pH unit and exchangeable aluminium was substantially increased, almost to levels prior to the initial application of lime. Given the continued yield responsiveness obtained following the initial application of lime, this practice, rather than regular applications of small amounts of lime, is recommended for wheat production on strongly acidic (pHw < 5.5) soils in south-eastern Australia.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 269 ◽  
Author(s):  
Guangzhou Liu ◽  
Yunshan Yang ◽  
Wanmao Liu ◽  
Xiaoxia Guo ◽  
Jun Xue ◽  
...  

Increasing planting density is an important practice associated with increases in maize yield, but densely planted maize can suffer from poor light conditions. In our two-year field experiments, two morphologically different cultivars, ZD958 (less compact) and DH618 (more compact), were planted at 120,000 plants ha−1 and 135,000 plants ha−1, respectively. We established different leaf area index (LAI) treatments by removing leaves three days after silking: (1) control, no leaves removed (D0); (2) the two uppermost leaves removed (D1); (3) the four uppermost leaves removed (D2); (4) the leaves below the third leaf below the ear removed (D3); (5) the leaves of D1 and D3 removed (D4); (6) the leaves of D2 and D3 removed (D5). Optimal leaf removal improved light distribution, increased photosynthetic capacity and the post-silking source-sink ratio, and thus the grain yield, with an average LAI of 5.9 (5.6 and 6.2 for ZD958 and DH618, respectively) for the highest yields in each year. Therefore, less-compact cultivars should have smaller or fewer topmost leaves or leaves below the ear that quickly senesce post-silking, so as to decrease leaf area and thus improve light distribution and photosynthetic capacity in the canopy under dense planting conditions. However, for more compact cultivars, leaves below the ear should senesce quickly after silking to reduce leaf respiration and improve the photosynthetic capacity of the remaining top residual leaves. In future maize cultivation, compact cultivars with optimal post-silking LAI should be adopted when planting densely.


2020 ◽  
Vol 71 (9) ◽  
pp. 795 ◽  
Author(s):  
Therese M. McBeath ◽  
Evelina Facelli ◽  
Courtney A. E. Peirce ◽  
Viran Kathri Arachchige ◽  
Michael J. McLaughlin

The ability to utilise foliar-applied phosphorus (P) as a strategy to increase the P status and yield of grain crops grown in dryland regions with variable climates is attractive. Several P formulations with varying pH, accompanying cations and adjuvants were tested for their effectiveness as foliar fertilisers for wheat (Triticum aestivum L.) plants, first under controlled and then under field conditions. Experiments under controlled conditions suggested that several formulations with specific chemistries offered promise with respect to wheat fertiliser-P recovery and biomass responses. These formulations were then evaluated in two field experiments, and although wheat grown at the sites showed substantive responses to soil-applied P, there was no significant grain-yield response to foliar-applied P. Following the limited responses to foliar-applied fertiliser in the field, we used an isotopic dilution technique to test the hypothesis that the variation in responses of wheat to foliar addition of P could be explained by a mechanism of substitution, whereby root P uptake is downregulated when P is taken up through the leaves, but this was proven not to be the case. We conclude that foliar P application cannot be used as a tactical fertiliser application to boost grain yield of wheat in dryland regions.


2008 ◽  
Vol 59 (3) ◽  
pp. 247 ◽  
Author(s):  
David W. Lester ◽  
Colin J. Birch ◽  
Chris W. Dowling

Nitrogen (N) and phosphorus (P) are the 2 most limiting nutrients for grain production within the northern grains region of Australia. The response to fertiliser N and P inputs is influenced partly by the age of cultivation for cropping, following a land use change from native pasture. There are few studies that have assessed the effects of both N and P fertiliser inputs on grain yield and soil fertility in the long term on soils with contrasting ages of cultivation with fertility levels that are running down v. those already at the new equilibrium. Two long-term N × P experiments were established in the northern grains region: one in 1985 on an old (>40 years) cultivation soil on the Darling Downs, Qld; the second in 1996 on relatively new (10 years) cultivation on the north-west plains of NSW. Both experiments consisted of fertiliser N rates from nil to 120 kg N/ha.crop in factorial combination with fertiliser P from nil to 20 kg P/ha.crop. Opportunity cropping is practiced at both sites, with winter and summer cereals and legumes sown. On the old cultivation soil, fertiliser N responses were large and consistent for short-fallow crops, while long fallowing reduced the size and frequency of N response. Short-fallow sorghum in particular has responded up to the highest rate of fertiliser N (120 kg N/ha.crop). Average yield increase with fertiliser N compared with nil for 5 short-fallow sorghum crops was 1440, 2650, and 3010 kg/ha for the 40, 80, and 120 kg N/ha, respectively. Average agronomic efficiency of N for these crops was 36, 33, and 25 kg grain/kg fertiliser N applied. This contrasts with relatively new cultivation soil, where fertiliser N response was generally limited to the first 30 kg N/ha applied during periods of high cropping intensity. Response to P input was consistent for crop species, VAM sensitivity, and starting soil test P level. At both the old and new cultivation sites, generally all winter cereals responded to a 10 kg P/ha application, and more than half of long-fallow sorghum crops from both sites had increased grain yield with P application. At the old cultivation site, average yield gain for 10 kg P/ha.crop treatment was 480 kg/ha for all winter cereal sowings, and 180 kg/ha for long-fallow sorghum. Short-fallow sorghum did not show yield response to P treatment.


1994 ◽  
Vol 45 (7) ◽  
pp. 1557 ◽  
Author(s):  
I Kuhnel

This study examines the relationship between the Southern Oscillation Index and the sugarcane yield anomalies at 27 mills in north-eastern Australia (Queensland) for the period 1950-1989. The major results of this work indicate that the SO1 alone seems to have only a limited value as predictor of total sugarcane yields over large areas (i.e. the whole of Queensland). However, on a smaller scale, the SO1 appears to be a useful indicator of yields for the northern sugarcane districts. In these northern areas, the highest correlations with the SO1 are reached during the southern hemisphere spring and summer months 6 to 11 months prior to the harvest. They are negative and explain about 40% of the total variance. They also suggest that a positive SO1 during the spring and summer months tends to be followed by lower-than-normal yields at the following harvest and vice versa. This signal is rather robust and withstands rigorous significance testing. Moreover, it appears that the relationship between the SO1 and the sugarcane yields has been relatively strong and stable for the past 40 years, but weakened substantially during the 1930-1940 period.


2004 ◽  
Vol 44 (1) ◽  
pp. 37
Author(s):  
M. K. J. El-Shatnawi ◽  
N. I. Haddad

Greenhouse pot trials and field experiments were carried out under rain-fed condition in north-eastern Jordan during 1997–98 and 1998–99 growing seasons, to test 3 barley genotypes for their suitability for both forage and grain production. The varieties Rehani and ACSAD176 produced higher forage yields than Rum. In the field, clipping reduced subsequent grain yield per plant by about 18%, lowering grain weight of the main spike from 2.3�g in the control to 1.8 g in the clipped plants. Clipping increased tiller density of barley plants in the field. Decreases in grain yield following clipping could also be attributed to reductions in the number of grains per spike. Clipping decreased the number of grains per spike by about 9% by reducing the number of spikelets per spike. Cutting reduced 1000-grain weight by about 9%. Clipping induced changes in the relative importance of yield components influencing subsequent grain yield. The yield components reduced by clipping were the most important contributors to loss of grain yield.


1985 ◽  
Vol 25 (4) ◽  
pp. 902 ◽  
Author(s):  
MDA Bolland

The responses of yellow serradella, slender serradella and subterranean clover to phosphorus from superphosphate and an apatite rock phosphate from Duchess, north-eastern Australia, were measured in a field experiment near Esperance, W.A. Over the 16 months of the experiment, dry herbage yields depended upon the phosphorus content of dried herbage. For each sampling time, the relationship between dry herbage yield and the phosphorus content of dried herbage was similar for both fertilizers and for all three species. At each rate of fertilizer application, the amount of phosphorus absorbed by the plants from the rock phosphate was less than that from superphosphate, and this limited yield. When fertilized with superphosphate, subterranean clover absorbed less phosphorus than the serradellas for each rate of fertilizer application, and this also reduced yield. Thus less phosphorus from superphosphate was required to produce serradella than was required to produce the same weight of subterranean clover. When fertilized with rock phosphate, 1982 herbage production was in the order: yellow serradella> subterranean clover>slender serradella. 1982 seed yields were: subterranean clover>yellow serradella> slender serradella. 1 983 herbage yields were: slender serradella>yellow serradella> subterranean clover. For herbage yields, for each rate of fertilizer application, this order was also dictated by the amount of phosphorus absorbed by each of the three species.


Sign in / Sign up

Export Citation Format

Share Document