Tolerance of perennial pasture grass seedlings to pre- and post-emergent grass herbicides

2006 ◽  
Vol 46 (5) ◽  
pp. 637 ◽  
Author(s):  
B. S. Dear ◽  
G. A. Sandral ◽  
B. C. D. Wilson

The tolerance of 5 perennial grasses during the seedling stage to pre- and post-emergent grass herbicides was examined in 3 glasshouse experiments. The perennial grass species screened were phalaris, (Phalaris aquatica L.), cocksfoot (Dactylis glomerata L.), wallaby grass [Austrodanthonia richardsonii (Cashm.) H.P. Linder], perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.). Wheat (Triticum aestivum L.) and subterranean clover (Trifolium subterraneum L.) were included as non-target species and annual ryegrass (Lolium rigidum Gaudin) and oats (Avena spp.) as representatives of typical weed species. Herbicides evaluated were fluazifop-p, tralkoxydim, diclofop-methyl, fenoxaprop-p-ethyl, fenoxaprop-p-ethyl + pyrazoline, sethoxydim, flamprop-m-methyl, quizalofop-p-ethyl, clethodim, simazine, imazethapyr, propyzamide, carbetamide, clodinafop-propargyl + cloquintocet-mexyl, propaquizafop, atrazine, trifluralin, triallate, pendimethalin, metribuzin, trifluralin + oryzalin, cyanazine, chlorsulfuron and triasulfuron. Herbicide phytotoxicity was assessed 15 and 30 days after post-emergent herbicide application using the European Weed Research Committee (EWRC) visual score of leaf damage (1 indicating no effect, 9 indicating all plants dead) and plant herbage yield depression relative to the unsprayed control. Plant responses to pre-emergent herbicides were assessed 45 days after sowing. Most herbicides were highly phytotoxic (EWRC score 4–9) to the perennial grass seedlings. However, atrazine, flamprop-m-methyl, imazethapyr, fenoxaprop-ethyl, and triallate caused less severe phytotoxicity (EWRC score 1–4) in phalaris, fescue, cocksfoot and perennial ryegrass from which they could be expected to recover, with yield reductions of between 0 and 45%, 30 days after spraying. Simazine caused yield losses of 20–50% in fescue, phalaris and perennial ryegrass which may be acceptable in swards with high weed burdens. Wallaby grass showed tolerance to flamprop-m-methyl, carbetamide, propyzamide and imazethapyr. Subterranean clover was tolerant of most herbicides with yield losses less than 20% except for the post-emergent herbicides simazine and atrazine, and the pre-emergent herbicides triasulfuron, metribuzin, cyanazine and chlorsulfuron where yield suppression was between 50 and 99%.


1956 ◽  
Vol 7 (5) ◽  
pp. 367 ◽  
Author(s):  
WD Andrew ◽  
CA Neal-Smith

Over the period 1952-1954 there was no significant difference in the yield of herbage produced annually by the addition to a Phalaris tuberosa L.–Trifolium subterraneum L. pasture mixture, of any one of the following grasses: Agropyron obtusiusculum Lange., Bromus coloratus Steud., Bromus inermis Leyss., Dactylis glomerata L., or Festuca arundinacea Schreb. There were indications of a small change in seasonal production where certain grasses, notably D. glomerata, were included in the mixture. Over the 3-year period the proportion of the sown grass component, in the mixtures where either D. glomerata, B. inermis, or B. coloratus were included, increased by a greater amount than where the simple mixture of phalaris and subterranean clover was used. The addition of each grass also lessened the amount of P. tuberosa in the sown grass component of the yield. In the third year, despite the varying proportions of the phalaris and associated sown grass species, the mean population of the sown perennial grasses in each treatment did not differ significantly from the mean figure of 1.34 plants/sq. lk. The increased production of the sown grass yield component following the association of certain of the above species with P. tuberosa suggests that the latter does not fully exploit the environment. The principle of including another perennial grass when sowing phalaris and subterranean clover might have wide application as a means of combatting "phalaris staggers".



1967 ◽  
Vol 7 (26) ◽  
pp. 249 ◽  
Author(s):  
RN Oram ◽  
K Hoen

Forty-six cultivars in eleven perennial grass species were assessed in association with subterranean clover in five trials extending over two to four growing seasons. Established stands of several phalaris and cocksfoot cultivars yielded more sown grass herbage and total herbage than Wimmera ryegrass, Australia Commercial phalaris and Currie cocksfoot. The highest yields were from C.P.I.19331 phalaris and G1 35 cocksfoot. G135 was also more resistant than Wimmera ryegrass to the invasion of older stands by barley grass. The herbage yield of the perennial grasses was more stable between years and trials than that of Wimmera ryegrass. The probable utility of these cultivars in the wheat belt and in the adjacent higher-rainfall pastoral zones is discussed.



2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.



2016 ◽  
Vol 16 ◽  
pp. 275-279
Author(s):  
E.J. Hall ◽  
R. Reid ◽  
B. Clark ◽  
R. Dent

In response to the need to find better adapted and more persistent perennial pasture plants for the dryland pastures in the cool-temperate low to medium rainfall (500-700 mm) regions, over 1000 accessions representing 24 species of perennial legumes and 64 species of perennial grasses, were introduced, characterised and evaluated for production and persistence under sheep grazing at sites throughout Tasmania. The work has identified four alternative legume species in Talish Clover (Trifolium tumens). Caucasian Clover (T. ambiguum), Stoloniferous Red Clover (T. pratense var. stoloniferum), Lucerne x Yellow Lucerne Hybrid (Medicago sativa x M.sativa subsp. falcata); and two grass species in Coloured Brome (Bromus coloratus) and Hispanic Cocksfoot (Dactylis glomerata var hispanica). Keywords: persistence, perennial grass, perennial legume



2006 ◽  
Vol 54 (7) ◽  
pp. 655 ◽  
Author(s):  
Tanja I. Lenz ◽  
José M. Facelli

The species composition of temperate grasslands in the mid-north of South Australia has been radically altered from a system dominated by native perennial grasses to a system dominated by Mediterranean annual grasses. This study investigated the importance of chemical and physical soil characteristics, topographical features and climatic variables on the abundance of native and exotic grass species in nine ungrazed grasslands. Overall, climatic and other abiotic factors were highly variable. In addition, past management practices and original species composition are generally unknown, leading to further unexplained variation in the data. On a large spatial scale (among sites), the abundance of exotic annual grasses was positively correlated with mean annual rainfall, and on any scale, with finer soil textures and higher soil organic carbon levels. The most abundant annual grass, Avena barbata (Pott ex Link), was generally associated with soil factors denoting higher soil fertility. The abundance of native perennial grass species was not correlated with any environmental variables at any scale. The various native perennial grass species did not show clear associations with soil factors, although they tended to be associated with factors denoting lower soil fertility. However, at small spatial scales (within some sites) and among sites, the abundances of exotic annual and native perennial grasses were strongly negatively correlated. The results suggest that at the present time, rainfall and soil properties are important variables determining the abundance of annual grasses. The driving variables for the abundance of perennial grasses are less clear. They may be controlled by other factors or extreme rainfall events, which were not surveyed. In addition, they are likely to be controlled by competitive interactions with the annual grasses.



2018 ◽  
Vol 11 (4) ◽  
pp. 201-207
Author(s):  
Parmeshwor Aryal ◽  
M. Anowarul Islam

AbstractForage kochia [Bassia prostrata(L.) A. J. Scott] is competitive with annual weeds and has potential for use in reclamation of disturbed land. However, land managers are reluctant to use forage kochia in revegetation programs due to lack of understanding of its compatibility with or invasiveness in the native plant community. We conducted two greenhouse experiments, one to compare the competitive effect of forage kochia versus perennial grasses on growth of cheatgrass (Bromus tectorumL.) and one to study the effect of forage kochia on growth of native perennial grasses. In the first experiment, a single seedling ofB. tectorumwas grown with increasing neighbor densities (0 to 5 seedlings pot−1) of either forage kochia, crested wheatgrass [Agropyron cristatum(L.) Gaertner ×A. desertorum(Fisch. ex Link) Schultes; nonnative perennial grass], or thickspike wheatgrass [Elymus lanceolatus(Scribn. & J. G. Sm.) Gould; native perennial grass].Bromus tectorumgrowth was reduced moderately by all three perennial neighbors, butA. cristatumandE. lanceolatushad more effect onB. tectorumwhen compared with forage kochia. This experiment was repeated and similar results were observed. In the second experiment, forage kochia was grown with each of four native cool-season grass species: basin wildrye [Leymus cinereus(Scribn. & Merr.) Á. Löve], bluebunch wheatgrass [Pseudoroegneria spicata(Pursh) Á. Löve],E. lanceolatus, and western wheatgrass [Pascopyrum smithii(Rydb.) Á. Löve]. Forage kochia had no effect on height, tiller number, and aboveground biomass of native grasses. Similarly, native grasses did not show a significant effect on forage kochia seedlings. This experiment was also repeated, and forage kochia somewhat reduced the aboveground biomass ofL. cinereusandP. spicata. However, all native grasses significantly reduced change in height, branching, and aboveground biomass of forage kochia. These results suggest that forage kochia interfered withB. tectorumseedling growth, but it showed little competitive effect on native grass seedlings.



2003 ◽  
Vol 54 (9) ◽  
pp. 903 ◽  
Author(s):  
S. P. Boschma ◽  
M. J. Hill ◽  
J. M. Scott ◽  
G. G. Rapp

A field experiment was conducted to study the effects of defoliation and moisture stresses on perennial pasture grasses and to identify traits associated with their resilience. The experiment, conducted near Armidale on the Northern Tablelands of NSW, studied 4 introduced perennial grass species (Phalaris aquatica, Festuca arundinacea, Dactylis glomerata, and Lolium perenne) and 2 native grass species (Microlaena stipoides and Austrodanthonia richardsonii) subjected to 3 moisture regimes (non-stress moisture, moderate drought, and severe drought) and 2 defoliation intensities (severe and moderate). Basal area, herbage mass, phenological growth stage, nitrogen concentration, root mass, and rooting depth were compared over 2 independent 6-month periods: spring–summer (1 September 1994–28 February 1995) and summer–autumn (1 December 1994–31 May 1995). Multiple regression was used to determine which traits were important for determining plant resilience.The differences between species and their respective responses were evident in the traits measured. In general, basal area tended to increase over summer and show little change during autumn. Severe defoliation stimulated plant growth, resulting in higher harvested herbage mass than from those moderately defoliated. Reproductive development was suppressed by severe drought and reduced by moderate drought. Severe defoliation suppressed flowering of Dactylis and Lolium at both drought intensities, compared with moderate defoliation. Phalaris, Festuca, and Austrodanthonia were the deepest rooting species during spring–summer, and Dactylis the shallowest. All species had similar rooting depths during summer–autumn, with those under severe and moderate drought having the deepest and shallowest rooting, respectively.Carbohydrate reserves and basal area were important traits for determining plant resilience during spring–summer. During summer–autumn, maintaining basal area and plant biomass through moderate grazing was important for resilience.



2013 ◽  
Vol 61 (5) ◽  
pp. 383 ◽  
Author(s):  
Ana M. Cenzano ◽  
M. Celeste Varela ◽  
Mónica B. Bertiller ◽  
M. Virginia Luna

Poa ligularis Nees. Ap. Steudel and Pappostipa speciosa (Trin. et Rupr.) Romaschenko are dominant perennial grasses in the arid Patagonian rangelands of Argentina. Both species are exposed to periods of water shortage during spring-summer and are grazed by domestic and native herbivores. Pappostipa speciosa displays xeromorphic adaptations and is less preferred by herbivores than P. ligularis. The knowledge of how drought affects morphological/functional traits in coexisting perennial grass species is useful to understanding the function of desert perennial grasses, and for the use and conservation of Patagonian arid rangelands. The hypothesis of this study was that co-existing perennial grasses contrasting in drought resistance mechanisms display different degrees of phenotypic plasticity in underlying and/or functional traits. Plants of both species were exposed to two levels of gravimetric soil moisture: 16% (~field capacity) and 4%. Plant vegetative and reproductive traits were measured weekly in individual plants and these were harvested at the end of the experiment. Aboveground and root biomass were separated in the harvested plants and the concentration of photosynthetic pigments was assessed in green leaves. The trait response range was also calculated through the plasticity index. In both species, drought stress led to significant reductions in plant height, total plant dry weight, number of total leaves, dry weight of green and senescent leaf, percentage of flowering plants, length of inflorescences, and number, length and dry weight of roots. The concentration of photosynthetic pigments increased under drought in both species. In conclusion, drought strongly affected reproductive and vegetative traits in both species and the greatest negative effect of drought was found in P. speciosa, the most conservative species. However, our findings might indicate that both species are able to maintain photosynthetic activity through the increase of photosynthetic pigments under drought conditions in Patagonian rangelands.



2003 ◽  
Vol 43 (6) ◽  
pp. 579 ◽  
Author(s):  
D. E. Elliott ◽  
R. J. Abbott

Two series of experiments were conducted in the Mt Lofty Ranges, South Australia, to examine, in a grass–subterranean clover pasture, the contribution of the companion grass to herbage mass and the responsiveness to the application of nitrogen (N) fertiliser. The first study examined the responsiveness, to a single rate of N, of grass–clover pastures containing either Tama ryegrass, sod-sown oats or 1 of 4 perennial grasses, viz. Victorian perennial ryegrass, Demeter fescue, Currie cocksfoot or Australian phalaris. These were compared in 2 experiments, under 3��different cutting frequencies at 3 periods during the growing season. In the other study, consisting of 12�experiments, the response to increasing rate of N fertiliser application of sod-sown oats or the existing pasture were compared over a 3-month period following N fertiliser application in autumn.In autumn and winter, all pastures responded significantly to N fertiliser, whereas in spring, the proportion of clover in each pasture and its growth determined whether or not there was a response to N fertiliser. Clover composition of pastures declined with N application, but clover was not eliminated from swards by application of 210 kg N/ha a year. In both series of experiments, pastures that established well with a high density of sod-sown oats out-yielded all other pastures in autumn and winter, whether the swards were unfertilised or received regular N fertiliser applications. In late winter, pastures sod-sown with Tama ryegrass yielded as well as the pasture sod-sown with oats, and enhanced spring growth significantly compared with perennial ryegrass. However, spring production of Tama ryegrass was poorer than that of perennial ryegrass, and overall no increase in annual production occurred. Of the perennial grasses, the highest yielding when N fertiliser was applied were Currie cocksfoot and perennial ryegrass (yielding in autumn), phalaris (winter), and perennial ryegrass and Demeter fescue (spring). Increased cutting frequency depressed the herbage mass response to N fertiliser following the initial application, but increased herbage N concentration of all pastures and also increased the final clover composition of N-fertilised pasture of 4�pasture types.



2014 ◽  
Vol 54 (10) ◽  
pp. 1646
Author(s):  
S. K. Muir ◽  
G. N. Ward ◽  
J. L. Jacobs

Traditional measures of the nutrient concentration of herbage before grazing may not accurately depict the nutrient intake of grazing animals. An experiment was conducted to investigate differences in DM and nutrient intake, and milk production of lactating cows offered chicory- or perennial ryegrass-based diets during spring on a commercial dairy farm in south-west Victoria. This experiment was conducted in mid-lactation (spring), with chicory (Cichorium intybus L.), perennial ryegrass (Lolium perenne L.) and a mixed sward of chicory and perennial ryegrass offered at two daily allowances (nominally 20 and 30 kg DM/cow to ground level). Selection differentials for estimated metabolisable energy (MJ/kg DM), neutral detergent fibre (NDF; g/kg DM) and acid detergent fibre (g/kg DM) varied (P < 0.05) with forage type, while allowance affected selection for estimated metabolisable energy, crude protein, acid detergent fibre and NDF (P < 0.01). However, the differences in selection differentials observed between the chicory, mixed sward and perennial ryegrass under the same conditions indicated that preferential grazing for leaf rather than stem in chicory may affect nutrient selection in a way that differs from perennial grass species, resulting in much lower intakes of NDF than indicated by traditional measurements of feed characteristics.



Sign in / Sign up

Export Citation Format

Share Document