Impact of animal health and welfare research within the CRC for Cattle and Beef Quality on Australian beef production

2006 ◽  
Vol 46 (2) ◽  
pp. 233 ◽  
Author(s):  
I. G. Colditz ◽  
D. L. Watson ◽  
R. Kilgour ◽  
D. M. Ferguson ◽  
C. Prideaux ◽  
...  

Research within the health and welfare program of the Cooperative Research Centre for Cattle and Beef Quality has delivered important improvements to the Australian cattle industry. Vaccines to assist with the control of bovine respiratory disease were developed and commercialised from Australian isolates of Mannheimia haemolytica and pestivirus (mucosal disease). Our understanding of the benefits of weaning cattle by confinement and hand feeding in yards (yard weaning) has been consolidated, and yard weaning has been adopted as ‘best practice’ for cattle production in the temperate zones of Australia. The importance of good temperament for improved growth rates and reduced morbidity during feedlot finishing, and for adaptation to stressors such as road transport, has been demonstrated. In response to this knowledge, industry is increasingly measuring flight time for use in breeding programs and feedlot management. The risk to meat quality of stressors such as mixing unfamiliar cattle in the weeks preceding slaughter or acute stress in the last 15 min before slaughter has been described. Adoption of these findings through Quality Assurance schemes will assist in assurance for the community and for export markets of the welfare standards of the Australian cattle and beef industry. This review provides details of the experiments that led to these achievements and to some improved understandings of temperament and behaviour of beef cattle.

2001 ◽  
Vol 41 (7) ◽  
pp. 843 ◽  
Author(s):  
B. M. Bindon

The Cooperative Research Centre for the Cattle and Beef Industry (Meat Quality) was formulated in 1992 by CSIRO, the University of New England (UNE), NSW Agriculture and Queensland Department of Primary Industries (QDPI) to address the emerging beef quality issue facing the Australian beef industry at that time: the demand from domestic and export consumers for beef of consistent eating quality. An integrated program of research involving meat science, molecular and quantitative genetics and growth and nutrition was developed. To meet the expectations of the Commonwealth of Australia, additional projects dealing with animal health and welfare and environmental waste generated by feedlot cattle were included. The program targeted both grain- and grass-finished cattle from temperate and tropical Australian environments. Integration of research on this scale could not have been achieved by any of the participating institutions working alone. This paper describes the financial and physical resources needed to implement the program and the management expertise necessary for its completion. The experience of developing and running the Cooperative Research Centre confirms the complexity and cost of taking large numbers of pedigreed cattle through to carcass and meat quality evaluation. Because of the need to capture the commercial value of the carcass, it was necessary to work within the commercial abattoir system. During the life of the Cooperative Research Centre, abattoir closure and/or their willingness to tolerate the Research Centre’s experimental requirements saw the Cooperative Research Centre operations move to 6 different abattoirs in 2 states, each time losing some precision and considerable revenue. This type of constraint explains why bovine meat science investigations on this scale have not previously been attempted. The Cooperative Research Centre project demonstrates the importance of generous industry participation, particularly in cattle breeding initiatives. Such involvement, together with the leadership provided by an industry-driven Board guarantees early uptake of results by beef industry end-users. The Cooperative Research Centre results now provide the blueprint for genetic improvement of beef quality traits in Australian cattle herds. Heritabilities of beef tenderness, eating quality, marbling, fatness and retail beef yields are now recorded. Genetic correlations between these traits and growth traits are also available. Outstanding sires for beef quality have been identified. Linked genetic markers for some traits have been described and commercialised. Non-genetic effects on beef quality have been quantified. Australian vaccines against bovine respiratory disease have been developed and commercialised, leading to a reduction in antibiotic use and better cattle performance. Sustainable re-use of feedlot waste has been devised.


2001 ◽  
Vol 41 (7) ◽  
pp. 943 ◽  
Author(s):  
W. Upton ◽  
H. M. Burrow ◽  
A. Dundon ◽  
D. L. Robinson ◽  
E. B. Farrell

The Cooperative Research Centre (CRC) for the Cattle and Beef Industry (Meat Quality) developed an integrated research program to address the major production and processing factors affecting beef quality. Underpinning the integrated program were 2 large-scale progeny testing programs that were used to develop genetic, nutritional, management and beef processing technologies to overcome deficiencies in beef quality. This paper describes the experimental design, generation of experimental cattle and the collection and storage of data derived from these straightbreeding and crossbreeding progeny testing programs.


2005 ◽  
Vol 45 (8) ◽  
pp. 941 ◽  
Author(s):  
H. M. Burrow ◽  
B. M. Bindon

In its first 7-year term, the Cooperative Research Centre (CRC) for the Cattle and Beef Industry (Meat Quality) identified the genetic and non-genetic factors that impacted on beef eating quality. Following this, the CRC for Cattle and Beef Quality was established in 1999 to identify the consequences of improving beef eating quality and feed efficiency by genetic and non-genetic means on traits other than carcass and beef quality. The new CRC also had the responsibility to incorporate results from the first Beef CRC in national schemes such as BREEDPLAN (Australia’s beef genetic evaluation scheme) and Meat Standards Australia (Australia’s unique meat grading scheme that guarantees the eating quality of beef). This paper describes the integrated research programs and their results involving molecular and quantitative genetics, meat science, growth and nutrition and industry economics in the Beef CRC’s second phase (1999–2006) and the rationale for the individual genetics programs established. It summarises the planned scientific and beef industry outcomes from each of these programs and also describes the development and/or refinement by CRC scientists of novel technologies targeting increased genetic gains through enhanced measurement and recording in beef industry herds, thereby ensuring industry use of CRC results.


2005 ◽  
Vol 45 (8) ◽  
pp. 959 ◽  
Author(s):  
W. A. McKiernan ◽  
J. F. Wilkins ◽  
S. A. Barwick ◽  
G. D. Tudor ◽  
B. L. McIntyre ◽  
...  

As a component of the second term of the Cooperative Research Centre (CRC) for Cattle and Beef Quality, a project to further test and validate the effects of varying nutritional growth paths pre-finishing and slaughter on cattle of varying genetic potential for meat yield and eating quality was designed and implemented. This project, ‘Regional Combinations’, was a multi-site experiment, using Bos taurus cattle generated at 4 locations across southern Australia. The design of imposing different growth paths between weaning and finishing on cattle with specific genetic potential is common across sites. Treatment and interaction effects on beef production and meat quality were examined within and across sites. This paper describes the experimental designs, generation of experimental cattle at the various sites and the measurements, collection and storage of the data for multi-site analyses.


2006 ◽  
Vol 46 (2) ◽  
pp. 183 ◽  
Author(s):  
K. Hammond

Strategic directions for the period 2010 to 2020 and research and development needs are considered for the Australian Beef Industry from the breeding sector’s perspective. These are related to the way major technologies are developed for an industry, the current status and likely trends in market development and appropriation of benefits to the consumer, processor, commercial beef producer and breeding sectors. The primary strategic needs identified are: (i) understand the functional biology for the major production environments (supply chain packages), (ii) accelerate the speed of genetic improvement for production environment breeding goals based on commercial sector profitability and the dissemination of superior genetic material to this sector, and (iii) retain and develop the Beef Cooperative Research Centre concept over the period. Tactics for realising each strategy are considered. Rigorously designed industry-level studies based on a genotype × environment interaction approach, involving all major production environments and breeds, have an important role to play, as do the serial development of measuring equipment and procedures for carcass quality and yield, body maintenance, disease management and maternal performance. Information and communication, molecular genetics and artificial insemination technologies, along with formal progeny testing and an extended BREEDPLAN system, will be increasingly used by the breeding as well as commercial industry sectors to more consistently meet particular market demands. Carefully executed progeny testing is a pragmatic and necessary breeding approach for the period, serving a number of important purposes. The beef industry as a whole will need to take more responsibility for its genetic improvement element by: managing the appropriation of benefits across sectors, developing an increasingly effective system of value-based marketing and, for each sector and production environment, a more appropriate program of capacity building. The industry could now usefully consider the further development of its activity to address these longer-term strategic needs.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-12
Author(s):  
Sally Thompson ◽  
Margaret Shanafield ◽  
Ana Manero ◽  
Greg Claydon

New land releases in the Perth Region on Western Australia’s Swan Coastal Plain are increasingly constrained by seasonally high groundwater (within 4m of the land surface). The measurement, modelling, and management of the effects of urbanisation in these high groundwater environments remains a challenging problem. To address this problem, the Cooperative Research Centre for Water Sensitive Cities (CRWSC) funded the “Knowledge-based water sensitive city solutions for groundwater impacted developments” Integrated Research Project, IRP5. In 2019, this project convened an Expert Panel to assess best-practice, and make recommendations to land development, engineering consulting, regulatory and advisory stakeholders. The Expert Panel explored strategies for groundwater risk assessment and provided technical guidance for measuring, modelling and predicting changes in groundwater as urbanisation progresses. It also obtained extensive input from stakeholders on the need to reduce the costs and risks of urban development in sites with high groundwater. In this paper, we argue that, by integrating technical best-practice groundwater assessments with design innovations and reforms to governance, urban development on high groundwater sites on the Swan Coastal Plain can minimise the current reliance on large volumes of sand fill. Although challenging, shifting to a low-fill development paradigm would represent a triple-bottom-line “win” for developers, homeowners and the environment.


2007 ◽  
Vol 546-549 ◽  
pp. 49-54 ◽  
Author(s):  
David H. StJohn

The CAST Cooperative Research Centre was established in 1993 as a joint venture between industry, research and government partners to carry out research and development in the area of light metals. Over the thirteen years since its formation CAST has developed a world class research program and, in addition to the significant application of outcomes by our industry partners, much of our research is being commercialised. In addition, CAST has developed a significant education and training program, a best practice technology transfer program for small and medium enterprises, consulting and design activities and established an alliance with Advanced Magnesium Technologies as a provider of their research and development needs. The development of CAST has been achieved by cooperation between all our partners who represent most of the light metals research groups and a significant proportion of light metals industries in Australia. The close involvement of the industry partners in all aspects of the operation of CAST has ensured we have a program of activities focused on delivering benefits to Australia’s light metals industry. This paper presents an overview of the magnesium research undertaken by CAST and other research groups such as the Centre of Excellence in Design of Light Metals and the CSIRO including their Light Metals Flagship program. Some highlights are new magnesium powertrain alloys, an alloy suitable for decorative and domestic applications called AM-lite, and new CSIRO casting technologies T-Mag and a twin roll strip casting process.


2001 ◽  
Vol 41 (7) ◽  
pp. 953 ◽  
Author(s):  
D. Perry ◽  
W. R. Shorthose ◽  
D. M. Ferguson ◽  
J. M. Thompson

This paper describes the methodology used for the collection of carcass yield and meat quality data from straightbred and crossbred cattle in the Cooperative Research Centre for Cattle and Beef Quality core program.


2017 ◽  
Vol 57 (1) ◽  
pp. 79 ◽  
Author(s):  
Eric Jas ◽  
Allison Selman ◽  
Valerie Linton

Existing legislation, regulation and documentation dealing with decommissioning of offshore oil and gas infrastructure has traditionally been derived from experience gained in the North Sea and the Gulf of Mexico. The Australian operating environments are very different and, consequently, there is no Australian industry-wide engineering standard dedicated to the decommissioning of offshore pipelines. Decommissioning of Australian offshore pipelines is currently handled on a case-by-case basis. The efficiency and effectiveness of any given decommissioning project is variable, and highly dependent upon the experience of the pipeline operator. Given the maturity stage of the Australian offshore oil and gas industry, it is foreseen that in the coming years many operators will approach the task of decommissioning offshore pipelines for the first time. In 2014 the Energy Pipelines Cooperative Research Centre (EPCRC) formed an offshore users group, comprising pipeline experts from several offshore oil and gas operators and engineering consultancies that are members of the Australian Pipelines and Gas Association’s Research and Standards Committee (APGA RSC). This group is developing an engineering guideline for the decommissioning of offshore pipelines. It is being developed in close communication with the Australian Petroleum Production and Exploration Association (APPEA), which has formed a decommissioning committee in relation to offshore facilities. This ensures the guideline is being developed by and with input from a broad spectrum of the Australian offshore oil and gas industry, with the aim of capturing best practice in the Australian context.


2001 ◽  
Vol 41 (7) ◽  
pp. 1073 ◽  
Author(s):  
B. M. Bindon ◽  
H. M. Burrow ◽  
B. P. Kinghorn

At the commencement of the Cooperative Research Centre for the Cattle and Beef Industry (Meat Quality) participating scientists were encouraged to anticipate the methods and channels that might be used to deliver the Cooperative Research Centre’s research outcomes to beef industry end-users. This important step was seen as the completion of the process, which began with the beef industry issue, leading then to formulation of the Cooperative Research Centre concept, initiation of the research program, completion of research and finally commercialisation or delivery of products and processes to industry. This paper deals with techniques, institutions and commercial arrangements employed to achieve delivery and adoption of diverse outcomes of the Cooperative Research Centre.


Sign in / Sign up

Export Citation Format

Share Document