The effect of 3BS locus of Sumai 3 on Fusarium head blight resistance in Australian wheats

2007 ◽  
Vol 47 (5) ◽  
pp. 603 ◽  
Author(s):  
G. Q. Xie ◽  
M. C. Zhang ◽  
S. Chakraborty ◽  
C. J. Liu

The 3BS allele of Sumai 3 has been the main source of Fusarium head blight (FHB) resistance worldwide. Using molecular markers and FHB resistance screenings, we have analysed the effects of this allele in two backcross and two 4-way F2 populations derived from elite Australian cultivars. Compared to individuals without the Sumai 3 allele, individuals with the allele showed an average 32.0% reduction in FHB severity as measured by number of diseased spikelets. This value was slightly reduced to 29.2% when the total number of spikelets was taken into account by expressing severity as the proportion of diseased spikelets. When compared to the parental cultivars, progeny with the 3BS allele of Sumai 3 offered, on average, 43.3% reduction in FHB severity. Significant differences were not detected between progeny that were homozygous or heterozygous for the 3BS locus, indicating a dominant inheritance of this locus. These results confirm that the 3BS allele controls a large component of the FHB resistance in Sumai 3, which can be readily incorporated and detected in backcross populations using molecular markers. The materials derived from this study could offer significant benefits to the Australian wheat breeding programs.

2020 ◽  
Vol 100 (2) ◽  
pp. 156-174
Author(s):  
S. Berraies ◽  
R.E. Knox ◽  
R.M. DePauw ◽  
F.R. Clarke ◽  
A.R. Martin ◽  
...  

Several quantitative trait loci (QTL) have been identified for Fusarium head blight (FHB) resistance in the cultivar Sumai 3. Wheat breeders need to know which Sumai 3 loci are present in derived lines used as parents for effective marker-assisted selection for genetic improvement. This study was conducted to identify the loci in Sumai 3 derived parents that contribute FHB resistance in breeding populations. Three doubled haploid (DH) populations utilizing Sumai 3 derived parents, ND3085, ND744, and Alsen, were evaluated during 2007 and 2008 in FHB nurseries near Carman, MB, Ottawa, ON and Charlottetown, PE. The percentage of incidence, severity, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON) accumulation were measured, and FHB index calculated. DNA markers at six FHB resistance loci detected in Sumai 3 were evaluated on the populations. For each trait, a t test was applied to means of observations pooled by parental type of each marker to determine which loci contributed to resistance. The alleles at 3BS and 5AS most frequently contributed to Type I and Type II FHB resistance, as well as to reduced FDK and DON in all three populations. Markers revealed resistance on 3BS and 5AS in Alsen, ND3085, and ND744, on 3BSc, 4D, and 6BS in ND744, on 4D in ND3085, and on 6BS in Alsen. In some environments, the susceptible parent Infinity contributed minor QTL on 2D, 3BSc, and 6BS. Likewise, Helios contributed minor QTL on 5AS and 6BS.


2021 ◽  
Author(s):  
Xianrui Guo ◽  
Qinghua Shi ◽  
Jing Yuan ◽  
Mian Wang ◽  
Jing Wang ◽  
...  

AbstractFusarium head blight (FHB), caused by Fusarium species, seriously threaten global wheat production. Three wheat-Th.elongatum FHB resistant translocation lines have been developed and used for breeding. Transcriptomic analysis identified a derivative glutathione S-transferase transcript T26102, which was homologous to Fhb7 and induced dramatically by Fusarium graminearum. Homologs of Fhb7 were detected in several genera in Triticeae, including Thinopyrum, Elymus, Leymus, Pseudoroegeria and Roegeria. Several wheat-Thinopyrum translocation lines carrying Fhb7 remain susceptible to FHB, and transgenic plants overexpressing the T26102 on different backgrounds did not improve the FHB resistance. Taken as a whole, we show the application of the chromatin derived from diploid Thinopyrum elongatum successfully conferring wheat with high level FHB resistance independent of the Fhb7.One Sentence SummaryThinopyrum elongatum chromatin from 7EL was successfully applied to wheat FHB resistance breeding, but the resistant gene other than the reported Fhb7 remained unknown.


2018 ◽  
Vol 108 (6) ◽  
pp. 730-736 ◽  
Author(s):  
Yi He ◽  
Xu Zhang ◽  
Yu Zhang ◽  
Dawood Ahmad ◽  
Lei Wu ◽  
...  

Fusarium head blight (FHB) is a destructive fungal disease in wheat worldwide. Efforts have been carried out to combat this disease, and the pore-forming toxin-like (PFT) gene at the quantitative trait locus (QTL) Fhb1 was isolated and found to confer resistance to FHB in Sumai 3. In this study, we characterized PFT in 348 wheat accessions. Four haplotypes of PFT were identified. The wild haplotype of PFT had higher resistance than other haplotypes and explained 13.8% of phenotypic variation in FHB resistance by association analysis. PFT was highly expressed during early flowering and increased after Fusarium graminearum treatment in Sumai 3. Analysis of the 5′ flanking sequence of PFT predicted that the cis elements of the PFT promoter were related to hormones and biological defense responses. However, PFT existed not only in the FHB-resistant accessions but also in some susceptible accessions. These results suggested that FHB resistance in a diverse range of wheat genotypes is partially conditioned by PFT. The profiling of FHB resistance and the PFT locus in this large collection of wheat germplasm may prove helpful for incorporating FHB resistance into wheat breeding programs, although more work is needed to reveal the exact role of the QTL Fhb1 in conferring resistance to fungal spread.


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 58 ◽  
Author(s):  
Moustafa Eldakak ◽  
Aayudh Das ◽  
Yongbin Zhuang ◽  
Jai Rohila ◽  
Karl Glover ◽  
...  

Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.


2015 ◽  
Vol 95 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Xinyao He ◽  
Mohamed Osman ◽  
James Helm ◽  
Flavio Capettini ◽  
Pawan K. Singh

He, X., Osman, M., Helm, J., Capettini, F. and Singh, P. K. 2015. Evaluation of Canadian barley breeding lines for Fusarium head blight resistance. Can. J. Plant Sci. 95: 923–929. Fusarium head blight (FHB) is a major challenge to the successful production of barley in Canada, as well as for end-users such as the malting and brewing industries. Due to the quantitative inheritance of FHB resistance, continuous effort is required to identify breeding lines with improved FHB resistance and incorporate them into crossing schemes to enhance FHB resistance. In the present study, 402 advanced breeding lines from Alberta, Canada, were evaluated in the FHB screening nursery at CIMMYT, Mexico. In 2011 and 2012, FHB incidence was measured on a scale of 1 to 4 to eliminate the most susceptible lines. In 2013 and 2014, 181 lines with the lowest disease scores in the previous 2 yr were tested in replicated experiments for field FHB index, Fusarium-damaged kernels, and deoxynivalenol content. Agronomic and morphological traits, specifically days to heading, plant height, and row and hull types were also evaluated in relations to FHB parameters. Correlation coefficients among the three FHB parameters in both 2013 and 2014 were all significant at P<0.0001, ranging from 0.36 to 0.63. Additional correlation analysis showed that late-maturing, tall, and two-row lines tended to have lower disease, whereas hull type did not show a significant correlation with FHB. Several lines with high and stable FHB resistance similar to that of the resistant checks were identified. These could be used in breeding programs as resistance sources or be registered as new cultivars if their overall attributes meet commercial standards.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1292-1299 ◽  
Author(s):  
F. E. Bokore ◽  
R. E. Knox ◽  
R. M. DePauw ◽  
F. Clarke ◽  
R. D. Cuthbert ◽  
...  

Genetic control of resistance to Fusarium head blight (FHB) is quantitative, making phenotypic selection difficult. Genetic markers to resistance are helpful to select favorable genotypes. This study was conducted to determine if Fhb1 and Fhb5 present in the Sumai 3 source of FHB resistance occur in Sumai 3-derived North American spring wheat cultivars and to understand the appropriateness of using markers to select for the favorable alleles at these loci in breeding. Sumai 3-derived parents Alsen, ND3085, ND744, Carberry, and Glenn were used in crosses to generate 14 doubled haploid breeding populations. The parents and progeny were genotyped with five Fhb1 and three Fhb5 microsatellite markers. Progeny were selected based on performance relative to parents and other control cultivars in FHB nurseries near Portage la Prairie and Carman, MB. χ2 and t test analyses were performed on marker and FHB data. The χ2 test frequently determined the proportion of lines carrying molecular variants associated with FHB resistance increased following nursery selection for FHB. Similarly, the t test regularly demonstrated that selection for FHB resistance lowered the mean level of disease associated with resistant marker haplotypes. The study affirmed FHB resistance sources Alsen, Carberry, ND3085, and ND744 have Fhb1 and Fhb5 loci like Sumai 3, but no evidence was found that Glenn carries Fhb1 and Fhb5 resistance alleles. The results justified use of Fhb1 and Fhb5 markers for marker assisted selection in populations derived from Alsen, Carberry, ND3085, and ND744, but not Glenn. Combined or individual application of Xgwm493 and Xgwm533 in selection of genotypes carrying Fhb1, and Xgwm150, Xgwm304, and Xgwm595 for Fhb5 will enhance FHB resistance in wheat.


Plant Disease ◽  
2021 ◽  
Author(s):  
Rupesh Gaire ◽  
Clay Sneller ◽  
Gina Brown-Guedira ◽  
David A. Van Sanford ◽  
Mohsen Mohammadi ◽  
...  

Fusarium head blight (FHB) is a devastating disease of wheat and barley. In the US, a significant long-term investment in breeding FHB resistant cultivars began after the 1990s. However, to this date, no study has been performed to understand and monitor the rate of genetic progress in FHB resistance as a result of this investment. Using 20 years of data (1998 to 2018) from the Northern Uniform (NU) and Preliminarily Northern Uniform (PNU) winter wheat scab nurseries which consisted of 1068 genotypes originating from 9 different institutions, we studied the genetic trends in FHB resistance within the northern soft red winter wheat growing region using mixed model analyses. For the FHB resistance traits incidence, severity, Fusarium damaged kernels (FDK), and deoxynivalenol content, the rate of genetic gain in disease resistance was estimated to be 0.30 ± 0.1, 0.60 ± 0.09, 0.37 ± 0.11 points per year, and 0.11 ± 0.05 ppm per year, respectively. Among the five FHB resistance QTL assayed for test entries from 2012 to 2018, the frequencies of favorable alleles from Fhb 2DL Wuhan1 W14, Fhb Ernie 3Bc, and Fhb 5A Ning7840 was close to zero across the years. The frequency of the favorable at Fhb1 and Fhb 5A Ernie ranged from 0.08 to 0.33 and 0.06 to 0.20 respectively across years, and there was no trend in changes in allele frequencies over years. Overall, this study showed that substantial genetic progress has been made towards improving resistance to FHB. It is apparent that the current investment in public wheat breeding for FHB resistance is achieving results and will continue to play a vital role in reducing FHB levels in growers’ fields.


2006 ◽  
Vol 86 (3) ◽  
pp. 711-716 ◽  
Author(s):  
M. A. Matus-Cádiz ◽  
C. J. Pozniak ◽  
G. R. Hughes ◽  
P. Hucl

After the initial identification of microsatellites linked to economically important traits of interest, the additional investment to simplify the screening procedure for more routine use is of interest to plant breeders. The objective was to simplify an acrylamide gel based marker-assisted selection (MAS) method to facilitate high-through put screening for Qfhs.ndsu-3BS, a major quantitative trait locus carrying fusarium head blight (FHB) resistance in Sumai-3 wheat (Triticum aestivum L.). Method simplifications included incorporating the use of (1) 96-well DNA extractions, (2) multiplexed PCR reactions using microsatellite primers gwm493 and gwm533, and (3) agarose gels. Our modified FHB-MAS method was verified by screening six resistant (Sumai-3, ND2710, McVey, BacUp, HY644, and Alsen) and 52 susceptible parents and subsequently used to screen 5567 common wheat breeding lines developed from Sumai-3 derivatives. This simple and rapid method allows for the screening of 1000 lines per week, which can be used to skew segregating populations towards more resistant types and thereby advance primarily early and advanced generation lines that carry at least the major FHB QTL. Key words: PCR, Fusarium, microsatellites, gwm493, gwm533, Triticum


2020 ◽  
Vol 21 (12) ◽  
pp. 4497 ◽  
Author(s):  
Raman Dhariwal ◽  
Maria A. Henriquez ◽  
Colin Hiebert ◽  
Curt A. McCartney ◽  
Harpinder S. Randhawa

Fusarium head blight (FHB) is one of the most devastating wheat disease due to its direct detrimental effects on grain-yield, quality and marketability. Resistant cultivars offer the most effective approach to manage FHB; however, the lack of different resistance resources is still a major bottleneck for wheat breeding programs. To identify and dissect FHB resistance, a doubled haploid wheat population produced from the Canadian spring wheat cvs AAC Innova and AAC Tenacious was phenotyped for FHB response variables incidence and severity, visual rating index (VRI), deoxynivalenol (DON) content, and agronomic traits days to anthesis (DTA) and plant height (PHT), followed by single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker genotyping. A high-density map was constructed consisting of 10,328 markers, mapped on all 21 chromosomes with a map density of 0.35 cM/marker. Together, two major quantitative trait loci for FHB resistance were identified on chromosome 2D from AAC Tenacious; one of these loci on 2DS also colocated with loci for DTA and PHT. Another major locus for PHT, which cosegregates with locus for low DON, was also identified along with many minor and epistatic loci. QTL identified from AAC Tenacious may be useful to pyramid FHB resistance.


Genome ◽  
2015 ◽  
Vol 58 (11) ◽  
pp. 479-488 ◽  
Author(s):  
David F. Garvin ◽  
Hedera Porter ◽  
Zachary J. Blankenheim ◽  
Shiaoman Chao ◽  
Ruth Dill-Macky

Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar ‘Freedom’ and introgressed into the susceptible wheat cultivar ‘USU-Apogee’. An F2:3 mapping population from a cross between Apogee and A30, its BC4 near-isoline exhibiting improved FHB resistance, was evaluated for resistance. The distribution of FHB resistance in the population approximated a 1:3 moderately resistant : moderately susceptible + susceptible ratio. Separate disease evaluations established that A30 accumulated less deoxynivalenol and yielded a greater proportion of sound grain than Apogee. Molecular mapping revealed that the FHB resistance of A30 is associated with molecular markers on chromosome arm 3DL that exhibit a null phenotype in A30 but are present in both Apogee and Freedom, indicating a spontaneous deletion occurred during the development of A30. Aneuploid analysis revealed that the size of the deleted segment is approximately 19% of the arm’s length. Our results suggest that the deleted interval of chromosome arm 3DL in Apogee may harbor FHB susceptibility genes that promote disease spread in infected spikes, and that their elimination increases FHB resistance in a novel manner.


Sign in / Sign up

Export Citation Format

Share Document