Influence of potassium and nitrogen fertiliser on yield, oil and protein concentration of canola (Brassica napus L.) grain harvested in south-western Australia

2007 ◽  
Vol 47 (8) ◽  
pp. 976 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

Most soils used for agriculture in south-western Australia are sandy and are now deficient in both potassium (K) and nitrogen (N) for cereal and canola (oilseed rape; Brassica napus L.) grain production. However, the effect of applying different levels of both fertiliser K and N on grain yields of these crops is not known. We report results of 10 field experiments, conducted on sandy soils in the region, to measure the effects of applying both K and N on canola grain yields and concentration of oil and protein in grain. Four levels of K (0–60 kg K/ha as potassium chloride) and four levels of N (0–138 kg N/ha as urea) were applied. Significant grain yield responses to applied N occurred in all experiments for the nil-K treatment and each level of K applied, with responses increasing as more N was applied. For all levels of N applied, significant grain yield responses occurred when up to 30 kg K/ha was applied, with no further significant grain yield responses occurring when 60 kg K/ha was applied. The K × N interaction was always significant for grain production. Application of K had no effect on the concentration of oil and protein in grain. Application of N consistently decreased concentration of oil and increased concentration of protein in grain. The K × N interaction was not significant for concentration of oil or protein in grain, but application of up to 30 kg K/ha significantly increased canola grain and so oil yields (concentration of oil in grain multiplied by grain yield). Our results are likely to be relevant for all acidic to neutral sandy soils worldwide used for growing canola crops.

2007 ◽  
Vol 47 (8) ◽  
pp. 984 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

The effect of fertiliser phosphorus (P) and nitrogen (N) on seed (grain) yield and concentration of oil and protein in grain of canola (oil-seed rape; Brassica napus L.) was measured in two field experiments undertaken at eight sites from 1993–2005 in south-western Australia, on soils deficient in P and N. Six rates of P (0–40 kg P/ha as single superphosphate) and four rates of N (0–138 kg N/ha as urea) were applied. Significant grain yield increases (responses) to applied P occurred in both experiments and these responses increased as rates of applied N increased. For grain production, the P × N interaction was significant in all eight years and locations of the two experiments. Application of P had no effect on concentration of oil and protein in grain. Application of N always decreased the concentration of oil and increased the concentration of protein in grain. For canola grain production in the region, responses to applied N always occur whereas responses to applied P are rare, but if soil P testing indicates likely P deficiency, both P and N fertiliser need to be applied.


2006 ◽  
Vol 46 (5) ◽  
pp. 675 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

The predominantly sandy soils of south-western Australia have become potassium (K) deficient for spring wheat (Triticum aestivum L.) production due to the removal of K from soil in grain and hay. The K requirements of canola (rape, Brassica napus L.) grown in rotation with wheat on these soils are not known and were determined in the study reported here. Seed (grain) yield increases (responses) of canola to applications of fertiliser K occurred at sites where Colwell soil test K values (top 10 cm of soil) were <60 mg/kg soil. Grain yield responses to applied K occurred when concentrations of K in dried shoots were <45 g/kg for young plants 7 and 10 weeks after sowing and <35 g/kg for 18 weeks after sowing. Application of fertiliser K had no significant effects on either oil or K concentrations in grain.


2009 ◽  
Vol 60 (6) ◽  
pp. 566 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

Canola (oilseed rape, Brassica napus L.) is now grown in rotation with spring wheat (Triticum aestivum L.) on the predominantly sandy soils of south-western Australia. For both crop species, fertiliser nitrogen (N) and phosphorus (P) need to be applied for profitable grain production. The fertiliser N requirements have been determined separately for canola or wheat when adequate P was applied. By contrast, the fertiliser P requirements of the 2 species have been compared in the same experiment when adequate N was applied and showed that canola consistently required ~25–60% less P than wheat to produce 90% of the maximum grain yield. We report results of a field experiment conducted at 7 sites from 2000 to 2003 in the region to compare grain yield responses of canola and wheat to application of N and P in the same experiment. Four levels of N (0–138 kg N/ha as urea [46% N]) and 6 levels of P (0–40 kg P/ha as superphosphate [9.1%P]) were applied. Significant grain yield responses to applied N and P occurred for both crop species at all sites of the experiment, and the N × P interaction for grain production was always significant. To produce 90% of the maximum grain yield, canola required ~40% more N (range 16–75%) than wheat, and ~25% less P (range 12–43%) than wheat. For both crop species at 7 sites, applying increasing levels of N had no significant effect on the level of P required for 90% of maximum grain yield, although at 1 site the level of P required to achieve the target yield for both crop species when no N was applied (nil-N treatment) was significantly lower than for the other 3 treatments treated with N. For both crop species at all 7 sites, applying increasing levels of P increased the level of N required for 90% of the maximum grain yield. Fertiliser P had no significant effect on protein concentration in canola and wheat grain, and oil concentration in canola grain. As found in previous studies, application of increasing levels of N decreased oil concentration while increasing protein concentration in canola grain, and increased protein concentration in wheat grain. The N × P interaction was not significant for protein or oil concentration in grain. Protein concentrations in canola grain were about double those found in wheat grain.


2000 ◽  
Vol 40 (6) ◽  
pp. 849 ◽  
Author(s):  
M. D. A. Bolland ◽  
K. H. M. Siddique ◽  
R. F. Brennan

Seed (grain) yield responses of faba bean (Vicia faba L. cv. Fiord) to applications of fertiliser phosphorus (0, 5, 10, 20 and 40 kg P/ha as triple superphosphate) and zinc (0, 0.5, 1 and 2 kg Zn/ha as zinc oxide) were measured in 3 field experiments conducted in 1997 and 1998 on neutral to alkaline soils in south-western Australia. Additions of fertiliser phosphorus significantly (P<0.001) increased grain yields by about 50 and 100% in 2 experiments, but in the third experiment differences in grain yield due to applications of fertiliser phosphorus were not significant (P>0.05). Increases in grain yields due to zinc fertiliser were small (<10%) and were only significant (P<0.05) in 1 experiment. This suggests the 3 sites chosen had adequate soil zinc for grain production of faba bean. In 1 experiment the increase in grain yield due to addition of phosphorus fertiliser was due to an increase in the number of pods per plant; numbers of seed per pod and mean seed weight were unaffected by additions of phosphorus and zinc fertiliser. Adding phosphorus and zinc fertiliser increased concentrations of both elements in grain, but had no effect on the concentrations of other nutrient elements (N, K, S, Ca, Mg, Na, Cu, Mn, Fe) measured in grain. These findings support results of a previous study in Western Australia indicating that phosphorus is the major nutrient element deficiency for grain production of faba bean in neutral to alkaline soils.


2006 ◽  
Vol 46 (8) ◽  
pp. 1061 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

The sulfur (S) requirements of canola (Brassica napus L.) grown in rotation with spring wheat (Triticum aestivum L.) and lupin (Lupinus angustifolius L.) in south-western Australia are not known. This study, involving 59 experiments, was conducted from 1993 to 2003 to determine soil and tissue test values for canola grain production below which S deficiency is likely. Extraction of S from soil using 0.25 mol KCl/L at 40°C (KCl-40 procedure) for the top 10 cm of soil is the standard soil test for S in the region. We measured KCl-40 values for soil samples collected at soil depths of 0–10, 10–20 and 20–30 cm and related the values to canola grain yield responses to applied fertiliser S measured at the end of the growing season. Total S measured in dried shoots at about 90 days after sowing (DAS) was related to shoot yields at 90 DAS and grain yields. In addition, the concentration of oil in canola grain was measured to see if applications of S affected oil concentrations. Soil test S was higher in the subsoil than in the top 10 cm of soil at about half the sites comprising sandy duplex soils with larger capacities to sorb sulfate in the subsoil. Significant grain yield responses to applied S occurred for soil test values <7 mg/kg to 30 cm. At many sites when soil test S was <7 mg/kg in the top 10 cm of soil, shoots showed grain yield responses to applied S, but canola roots eventually accessed sufficient S in the subsoil for grain production, so that no grain yield responses to applied fertiliser S occurred. Therefore, tissue test values for dried shoots at 90 DAS poorly predicted S deficiency for grain production. Responses of shoots and grain to applied S occurred for S concentrations in shoots <4 g/kg. We conclude that shallow soil tests and early tissue testing may both overestimate the magnitude of an S deficiency for grain production of canola grown in sandy WA soils. Deeper soil tests need to be seriously considered. Applications of fertiliser S mostly had no consistent effect on concentrations of oil in canola grain.


2012 ◽  
Vol 63 (1) ◽  
pp. 17 ◽  
Author(s):  
Penny Riffkin ◽  
Trent Potter ◽  
Gavin Kearney

Area and production of canola (Brassica napus L.) in the High Rainfall Zone (HRZ) of southern Australia has increased significantly over the past decade. Varieties available to growers have not been bred specifically for the HRZ and are generally adapted to the drier regions of the cropping belt. Field experiments were conducted at Hamilton in south-west Victoria in 2005, 2006 and 2008 to identify canola traits and management suited to the HRZ of southern Australia. Nine varieties with different reported maturities (winter and spring types) were sown at either two times of sowing and/or under different nitrogen (N) fertiliser regimes. Dates of key phenological development were recorded, dry matter was determined at bud, flowering and maturity and grain yield and yield components were determined at harvest. Plant traits and climate data were assessed in relation to grain yield. Yields of the winter types were either significantly (P < 0.05) greater or not significantly less than the spring types in all 3 years and similar to those reported under experimental conditions in Europe. This was despite the winter types flowering up to 35 days later than the spring types and spring rainfall being approximately half that of the long-term average. In general, the winter types had greater early vigour, greater dry matter production at the bud, flowering and maturity stages and were taller than the spring types. Regression analysis showed positive relationships between grain yield and pod density and plant size (dry matter and plant height). Plant size was influenced by variety, time of sowing and N fertiliser application rates. Crops in the HRZ were able to sustain more seeds per pod at larger canopy sizes and pod densities than those achieved in the northern hemisphere. Despite the number of pods per g of dry matter at flowering being nearly double that reported in the UK, there was little apparent reduction in the number of seeds per pod. It is possible that higher solar radiation and warmer minimum temperatures in the HRZ of Australia provide conditions more favourable for growth before, and during grainfill. This indicates that different dry matter production and yield component targets may be appropriate for canola in this environment especially in more typical seasons. It is likely that growers will need to sow new, later maturing varieties earlier and with higher rates of N fertiliser than is current practice in Australia. This study indicates that winter types may have the potential to provide improvements to the yield of canola in the HRZ either through the direct importation of varieties from overseas or through the identification and incorporation of desired traits into existing material. It is recommended that a wider range of germplasm be assessed over a greater geographical area to identify traits and management practices to optimise phenology and canopy structure. This information can be used to help inform breeders on crop improvement priorities as well providing tailored management practices to maximise grain yields for this environment.


1983 ◽  
Vol 23 (120) ◽  
pp. 30
Author(s):  
T Dickson ◽  
GF Haydon ◽  
JC Dwyer

Twenty-seven field experiments were carried out over the period 1973 to 1977 with soybeans Glycine max(L.) Merrill cv. Bragg on krasnozem, euchrozem and xanthozem soils in the South Burnett region of Queensland to study effects of phosphorus, potassium, calcium and sulfur on grain yield and plant nutrient composition. Grain yield responses (P< 0.01) were associated with increased seed number rather than heavier grain weights. These were recorded at approximately 30% of the 27 sites that received 20 or 40 kg P/ha and on 25% of 17 sites after an application of 50 kg K/ha. No yield gains were measured from applications of calcium and sulfur. Moisture stress from anthesis to maturity restricted grain production in all years but only in one were responses to applied nutrients seriously reduced. Indices for the attempted prediction of yield responses to applied elements were derived from the concentration of elements in leaves and whole tops collected at anthesis. Mean leaf phosphorus concentrations were 0.24% in control plots and 0.26% in fertilized treatments. No relation between leaf phosphorus and response to applied phosphorus could be established but leaf potassium concentration in control treatments averaged 0.66% at responsive sites and 1.64% at non-responsive sites.


1986 ◽  
Vol 26 (3) ◽  
pp. 361
Author(s):  
MW Perry ◽  
DJ Miers

The effect of chlormequat on the grain yield of wheat was investigated in 24 field experiments between 1981 and 1983. Two times of application (at the 3.5- and 6-leaf growth stages-Zadoks decimal score 13.5 and 16.0) and rates of application up to 0.75 kg/ha a.i. were tested with two chlormequat formulations, Cycocel 750 and Bettaquat. Chlormequat application reduced crop height in all trials, but crop lodging did not occur in any trial. Statistically significant yield responses to rate of application alone were obtained in only three of 24 trials, with maximum yield occurring at 0.19-0.37 kg/ha a.i. and with some indication of a yield depression at 0.75 kg/ha a.i. A significant effect of time of application was observed in only two trials, but the results conflicted. In one trial there was a significant interaction between rate and time, with a response to rate of chlormequat only at the 6-leaf stage. No differences were detected between chlormequat formulations. In individual trials, the mean grain yield from the chlormequat treatments ranged from 92.9 to 116.5% of the control. However, averaging over all trials in each year, chlormequat treatments yielded 102.5, 99.3 and 100.0% of the control, respectively, in the three years. Our results confirm that low application rates of chlormequat, applied early in crop development, can increase grain yield. However, over the 24 trials, the effects of chlormequat were too small and inconsistent to warrant its use to increase wheat grain yields under natural rainfall in south-western Australia.


1987 ◽  
Vol 108 (2) ◽  
pp. 293-298
Author(s):  
Ethel M. White

SummaryGrain and straw yields of a range of spring barley cultivars were assessed in field experiments conducted from 1981 to 1983 in Northern Ireland. Mean straw yields varied between 2·75 t/ha in Inga and 1·94 t/ha in Golden Promise over the 3-year period. Both grain and straw yields varied from year to year, with straw production being more consistent for individual cultivars than grain yield. High grain yields were not associated with high straw yields, straw to grain ratios varying between 0·72 in Midas and 0·51 in Corgi. Neither grain yield nor straw length were good predictors of straw yield of cultivars. The role for and assessment of straw yield in cultivar evaluation is discussed.


1999 ◽  
Vol 39 (5) ◽  
pp. 595 ◽  
Author(s):  
R. F. Brennan

The effectiveness of manganese fertiliser for seed (grain) production of lupin (Lupinus angustifolius L.) was measured in 31 field experiments when manganese sulfate, applied at 0–15 kg manganese/ha was either: (i) placed (drilled) with the seed at about 5 cm; (ii) applied to the soil surface (topdressed) before sowing; or (iii) banded about 8 cm below the seed (13 cm below the soil surface) while sowing. Relative to the nil-manganese treatment, additions of manganese fertiliser increased yields by 190–1870 kg seed/ha. Increases were greatest for manganese banded below the seed (average increase 1100 kg seed/ha) followed by manganese drilled with the seed (average increase 845 kg/ha), while the topdressed manganese fertiliser was least effective (average increase 670 kg/ha). Additions of manganese fertiliser did not affect plant density (measured 1 month after sowing) or the yield of dried shoots. A concentration of manganese in the main stem of about 20 mg/kg was a reliable predictor of manganese deficiency in lupin grain yield. It is therefore recommended that manganese fertiliser is banded about 8 cm below the seed while sowing lupin rather than the present practices of either drilling the manganese fertiliser with the seed or topdressing it before sowing.


Sign in / Sign up

Export Citation Format

Share Document