Pollen gene flow in South Australian cherry (Prunus avium L.) orchards

1997 ◽  
Vol 37 (5) ◽  
pp. 583 ◽  
Author(s):  
A. R. Granger

Summary. Isozyme analysis of sweet cherry embryos from 3 different South Australian orchards has proven to be an invaluable diagnostic tool. It has shown that in comparison with almond orchards, pollen gene flow occurs over much greater distances. Furthermore, pollen genes are being donated by more than one polleniser cultivar. For example, Sam planted at Lenswood Horticultural Centre was pollinated by both Vista and Merton Glory Protective netting was used to exclude birds from the cherry orchard at Lenswood and only 0.003% of the apparent net pollen gene flow came from cultivars planted outside of the net to those within. The presence of bird netting discouraged the movement of honeybees. Cross-compatible pollen rather than self pollen contributed most to embryo formation in the self-fertile cultivar Stella. Seventy-one percent of embryos produced by Stella at Lenswood were as a result of outcrossing. This work has culminated in some important recommendations for the cherry industry. Namely that where bird exclosures are used bee hives and polleniser cultivars should be placed inside the netted area, and when planting self-fertile cultivars, such as Stella, polleniser cultivars should be included in the orchard plan.

2005 ◽  
Vol 83 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Bjarne Hjelmsted Pedersen

The tensile strengths of graftings between three selected sweet cherry cultivars and five selected cherry rootstocks were determined with an Instron instrument 6, 12, and 18 weeks after grafting and compared with the tensile strength of self-grafted rootstocks and graftings of rootstocks used as scions. The combination of sweet cherry cultivars and rootstocks was selected to provide a range of compatibility based on preliminary work. The tensile strengths of sweet cherry cultivars grafted on different rootstocks never exceeded the tensile strengths of the self-grafted rootstocks. Rootstocks grafted as scions on Prunus avium L. rootstocks and self-grafted rootstocks produced some of the strongest unions tested and also produced union strength much faster than any of the other combinations. The degree of compatibility was quantified and results indicated that if this value was below 0.2, measured 18 weeks after grafting, it corresponded to combinations with major risks of delayed incompatibility.Key words: tensile strength, grafting, compatibility, sweet cherry, Prunus avium.


2004 ◽  
Vol 22 (4) ◽  
pp. 387-398 ◽  
Author(s):  
Mo Zhu ◽  
Xiaoming Zhang ◽  
Kaichun Zhang ◽  
Lijie Jiang ◽  
Limin Zhang

Author(s):  
Ammar Motea Askarieh, Sawsan Suleiman, Mahasen Tawakalna Ammar Motea Askarieh, Sawsan Suleiman, Mahasen Tawakalna

The study aims to increase the fruitset percentage of sweet cherry trees, reduce their fall rate and increase fruit retention percentage that reaches the maturity stage. It was conducted during 2019/2020 years at Cherry orchard located in Sargaya- Al- Zabadani area in Rural Damascus, in Syria. the experiment included 4 foliar spray treatments (T1: Control, T2: Zn (100 ppm), T3: B (500 ppm), T4: (100 ppm Zn + 500 ppm B) on sweet cherry trees (Prunus Avium L.) cultivar (Bing) the fruitset percentage, fruit drop percentage, fruiting factor, and yield quantity were calculated for all treatments. The results showed that all treatments (T2, T3, T4) recorded higher fruitset percentage, compared to the control (T1) with no significant differences between (74.83, 76.35, 76.25%) respectively, while the control fruitset percentage (72.76%), and (T4) has achieved the highest percentage of fruiting factor (41.40%) with no significant differences between it and treatment (T3) (37.12%), and the highest yield (19.98 kg), as well as (T2, T3) treatments was (9.39, 10.80 kg/tree) respectively, while the control yield was (5.93 kg/tree). Therefore, it can be considered that treatment (T4) has succeeded in reducing Sweet cherry fruit drop, where the fruit drop percentage didn't exceed (70.27%), and in (T2, T3) treatments was (74.94, 72.99%) respectively, while it reached in the control treatment to (80.64%).


2021 ◽  
Vol 175 ◽  
pp. 111494
Author(s):  
Excequel Ponce ◽  
Blanca Alzola ◽  
Natalia Cáceres ◽  
Madeline Gas ◽  
Catalina Ferreira ◽  
...  

2008 ◽  
Vol 4 (4) ◽  
pp. 897-910 ◽  
Author(s):  
James W. Olmstead ◽  
Audrey M. Sebolt ◽  
Antonio Cabrera ◽  
Suneth S. Sooriyapathirana ◽  
Sue Hammar ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Xiliang Qi ◽  
Congli Liu ◽  
Lulu Song ◽  
Yuhong Li ◽  
Ming Li

Author(s):  
Michaela Benková ◽  
Iveta Čičová ◽  
Daniela Benedikova ◽  
Lubomir Mendel ◽  
Miroslav Glasa

Abstract The work is focused on the evaluation of variability of morphological and pomological characteristics of several old sweet cherries (Prunus avium L.) that were found in different Slovak regions. The experimental work has been performed during two years, 2014 and 2015. The following characteristics according to the descriptor list of subgenus Cerasus were evaluated - period of flowering and ripening, morphological characteristics of the flowers, fruit size, fruit weight, and quality parameters. The results showed high variability of evaluated accessions. From the 13 surveyed localities, the most valuable accessions were found in the locality Hornį Streda - places Čachtice, Krakovany, Nitra, and Brdárka. During the collecting expeditions, 170 accessions of sweet cherry, with fruit of the different quality were found. The most interesting accessions were grafted onto rootstocks with different intensity of growth (Prunus avium L., Prunus mahaleb L., and ‘Gisela5’). Some of the selected cherry accessions can be used for commercial growing after tests, while some of them can be used only for collection of genetic resources and as potential genitors in breeding programmes.


1960 ◽  
Vol 40 (4) ◽  
pp. 707-712 ◽  
Author(s):  
W. H. A. Wilde

Little cherry virus disease of sweet cherry (Prunus avium L.) was transmitted under screenhouse conditions by 3 species of leafhoppers (Homoptera: Cicadellidae) out of 24 species tested. Macrosteles fascifrons (Stal), the 6-spotted leafhopper, transmitted the disease in seven tests; Scaphytopius acutus (Say), the sharp-nosed leafhopper, transmitted it once; and Psammotettix lividellus (Zett.) transmitted it once. The transmissions were made from diseased sweet cherry trees of the variety Lambert to indicators of the varieties Star or Sam. With the exception of 1 transmission, 2 to 4 years were necessary following inoculation for unmistakable expression of symptoms in the indicators. M. fascifrons was also implicated in 18 successful transmissions to mature sweet cherry trees grown in the open.


Sign in / Sign up

Export Citation Format

Share Document