The effect of land treatment in the preceding wet season on yield of linseed in the Ord River Valley

1964 ◽  
Vol 4 (14) ◽  
pp. 197 ◽  
Author(s):  
DF Beech ◽  
MJT Norman

Two experiments were carried out at Kimberley Research Station, W.A., in 1960-61 and 1961-62, to test the effects of treatment of land in the wet season prior to growing a dry season irrigated linseed crop. In both experiments, the lowest linseed yields were obtained after a resting fallow, when the land remained uncultivated over the whole wet season, and high yields were obtained after a clean fallow, involving repeated cultivations. However, in the second experiment, equally high yields were obtained after a single early wet season ploughing. Factorial combinations of herbicide and nitrogen fertilizer treatments were superimposed. From the interactions it was concluded that, in the first experiment, the beneficial effects of wet season cultivation were the result of increased available soil nitrogen supply, and, in the second experiment, of increased nitrogen supply and reduction in weed infestation.

2010 ◽  
Vol 18 (6) ◽  
pp. 1157-1162
Author(s):  
Shu-Jun ZHAO ◽  
Jia-Fu YUAN ◽  
Xin-Ran ZHANG ◽  
Xiang-Yu XU ◽  
You-Sheng XIONG ◽  
...  

2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

1968 ◽  
Vol 8 (30) ◽  
pp. 59 ◽  
Author(s):  
R Wetselaar ◽  
DF Beech

Safflower, linseed, and wheat were grown under irrigation at Kimberley Research Station in the 1964 dry season following 6 and 18 month clean and weedy fallows. Four levels of nitrogen fertilizer, as ammonium sulphate and urea, were superimposed. Crop nitrogen yields were highest after 18 months clean fallow, and were highly correlated with the amount of nitrate-nitrogen that had accumulated in the soil profile during the preceding fallow period. For wheat, which was the most efficient user of mineral nitrogen, 160 lb nitrogen an acre as ammonium sulphate was required after 18 months weedy fallow to equal the crop nitrogen yield after 18 months clean fallow without nitrogen fertilizer. The mean crop nitrogen yield with urea was only 76.7 per cent of that with ammonium sulphate. The results indicate that the form, and possibly the distribution, of mineral nitrogen in the soil in the early stages of crop growth could be important factors determining the efficiency of nitrogen for optimum plant performance.


1987 ◽  
Vol 27 (1) ◽  
pp. 155 ◽  
Author(s):  
AL Chapman ◽  
RJK Myers

The uptake of nitrogen (N) by dry season rice following wet season crops of soybean (for grain or green manure), green gram, Sesbania cannabina (a native legume), a cereal (sorghum or dryland rice for grain), or bare fallow, was studied for 3 cropping cycles over 4 years. The work was done on Cununurra clay (0.04% N) at Kimberley Research Station near Kununurra, W.A., in the Ord Irrigation Area. Stubbles were returned to the soil except in the first cycle when (excluding the green manure treatment) all tops were removed from the plots at maturity. There was a 12-month bare fallow period between the first and second cycles. Dry season rice was drill-sown with or without 100 kg ha-1 of N applied as urea at permanent flooding. Soybean, green gram and Sesbania crops accumulated 290-360, 80-130 and 110-180 kg N ha-1, respectively, in the tops at maturity. An average of about 40 kg N ha-1 was present in the stem bases and roots (0-20 cm depth). Estimates of nitrogen fixation based on 15N dilution measurements ranged from 65-72% of total plant N when the legumes were grown after 12 months fallow, to 93-95% when they were grown immediately following dry season rice. Fertiliser N at 25 kg ha-1 applied presowing ('starter' N) had no significant effect on legume N yield at maturity. N returned in leaves, stems and hulls averaged 30, 50 and 80 kg N ha-1 for green gram, soybean and Sesbania, respectively. Rice grain yields and N uptake at maturity were generally highest after Sesbania and lowest after a wet season cereal crop. Differences among treatments were small and related to the quantity of N returned in residues. On average, 11% of the N in the residues was recovered in the tops of the following rice crop. Rice yields increased over the 4-year period, but mean increases were similar for legume and non-legume treatments. The average apparent recovery of N applied as urea to dry season rice at permanent flooding was 76%. The inclusion of a soybean cash crop in the rotation offers the possibility of a marginal reduction in the need for N fertiliser.


Ecology ◽  
1982 ◽  
Vol 63 (5) ◽  
pp. 1277-1284 ◽  
Author(s):  
Edward K. Christie ◽  
James K. Delting

2020 ◽  
Author(s):  
Joann Whalen ◽  
Hicham Benslim

<p>Earthworms create hotspots that support microbial diversity and activity in soil. These hotspots may be internal to the earthworm, such as in their intestinal tract, or external to the earthworm in the biopores, casts and middens they create on the soil surface and within the soil profile. This presentation summarizes some of the key hotspots associated with earthworms, and how the biostimulated microbial community in these areas contributes to soil nitrogen cycling. We will present observations about the diversity and activity of nitrogen-cycling microorganisms that live within the earthworm and in its built environments, as well as the population- and community-level contributions of earthworms to denitrification, nitrogen mineralization, and the soil nitrogen supply in temperate agroecosystems.</p>


2002 ◽  
Vol 139 (2) ◽  
pp. 115-127 ◽  
Author(s):  
MARTYN SILGRAM ◽  
BRIAN J. CHAMBERS

The effects of straw incorporation (early and late cultivation) and straw burning were contrasted in a split-plot study examining the impact of long-term straw residue management, and six fertilizer nitrogen (N) rates on soil mineral nitrogen, crop fertilizer N requirements and nitrate leaching losses. The experiments ran from 1984 to 1997 on light-textured soils at ADAS Gleadthorpe (Nottinghamshire, UK) and Morley Research Centre (Norfolk, UK).Soil incorporation of the straw residues returned an estimated 633 kg N/ha at Gleadthorpe and 429 kg N/ha at Morley on the treatment receiving 150 kg/ha per year fertilizer N since 1984. Straw disposal method had no consistent effect on grain and straw yields, crop N uptake, or optimal fertilizer N rates. In every year there was a positive response (P<0·001) to fertilizer N in straw/grain yields, N contents and crop N offtakes at both sites. Nitrate leaching losses were slightly reduced by less than 10 kg N/ha where straw residues had been incorporated, while fertilizer N additions increased nitrate leached at both sites.At both sites there was a consistent effect (P<0·001) of straw disposal method on autumn soil mineral N, with values following the pattern burn>early incorporate>late plough. The incorporation of straw residues induced temporary N immobilization compared with the treatment where straw was burnt, while the earlier timing of tillage on the incorporate treatment resulted in slightly more mineral N compared with the later ploughed treatment. Fertilizer N rate increased (P<0·001) soil mineral nitrogen at both sites. At Morley, there was more organic carbon in the plough layer where straw had been incorporated (mean 1·09 g/100 g) rather than burnt (mean 0·89 g/100 g), and a strong positive relationship between organic carbon and fertilizer N rate (r2=93·2%, P<0·01). There was a detectable effect of fertilizer N on readily mineralizable N in the plough layer at both Gleadthorpe (P<0·001) and Morley (P<0·05). At Morley, there was a consistent trend (P=0·06) for readily mineralizable N to be higher where straw had been incorporated rather than burnt, indicating that ploughing-in residues may contribute to soil nitrogen supply over the longer term.


Sign in / Sign up

Export Citation Format

Share Document