Conservation cropping systems for the semi-arid tropics of North Queensland, Australia

1991 ◽  
Vol 31 (4) ◽  
pp. 515 ◽  
Author(s):  
AL Cogle ◽  
RJ Bateman ◽  
DH Heiner

A farming systems project was commenced in the semi-arid tropics of north-eastern Australia to assess the cropping potential and reliability of a newly developing region. Emphasis was placed on evaluation of conservation cropping systems, since it was expected that these would be the most successful and protective uses of the land. This paper discusses the agronomy of peanuts, maize and sorghum grown under different conservative cropping practices (reduced tillage, no tillage, ley) on the soil (red earth) most likely to be developed for large-scale cropping in the region. Crop yields with all practices were limited by establishment difficulties including high soil temperatures, poor weed control and climatic variability. Reduced tillage was more successful than no tillage due to higher yields in dry years; however, in wet years no tillage produced similar yields. The ley cropping system may have some advantages in this environment for integrated production and resource protection.

Soil Research ◽  
1999 ◽  
Vol 37 (2) ◽  
pp. 279 ◽  
Author(s):  
M. J. Bell ◽  
P. W. Moody ◽  
S. A. Yo ◽  
R. D. Connolly

Chemical and physical degradation of Red Ferrosols in eastern Australia is a major issue necessitating the development of more sustainable cropping systems. This paper derives critical concentrations of the active (permanganate-oxidisable) fraction of soil organic matter (C1) which maximise soil water recharge and minimise the likelihood of surface runoff in these soils. Ferrosol soils were collected from commercial properties in both north and south Queensland, while additional data were made available from a similar collection of Tasmanian Ferrosols. Sites represented a range of management histories, from grazed and ungrazed grass pastures to continuously cropped soil under various tillage systems. The concentration of both total carbon (C) and C1 varied among regions and farming systems. C1 was the primary factor controlling aggregate breakdown, measured by the percentage of aggregates <0·125 mm (P125) in the surface crust after simulated rainfall. The rates of change in P125 per unit change in C1 were not significantly different (P < 0·05) for soils from the different localities. However, soils from the coastal Burnett (south-east Queensland) always produced lower P125 (i.e. less aggregate breakdown) than did soils from the inland Burnett and north Queensland locations given the same concentration of C1. This difference was not associated with a particular land use. The ‘critical’ concentrations of C1 for each region were taken as the C1 concentrations that would allow an infiltration rate greater than or equal to the intensity of a 1 in 1 or 1 in 10 year frequency rainfall event of 30 min duration. This analysis also provided an indication of the risk associated with the concentrations of C1 currently characterising each farming system in each rainfall environment. None of the conventionally tilled Queensland Ferrosols contained sufficient C1 to cope with rainfall events expected to occur with a 1 in 10 frequency, while in many situations the C1 concentration was sufficiently low that runoff events would be expected on an annual basis. Our data suggest that management practices designed both to maximise C inputs and to maintain a high proportion of active C should be seen as essential steps towards developing a more sustainable cropping system.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 558A-558
Author(s):  
Chad M. Hutchinson ◽  
Milton E. McGiffen

The goals of sustainable agriculture include decreased reliance on synthetic nutrients and pesticides and improved environmental quality for the long-term benefit of the land, livelihood of growers, and their communities. Cropping systems that maximize these goals use alternative fertility and pest control options to produce crops with minimal soil erosion and nutrient leaching. Cropping system elements that can help achieve these goals include: reduced tillage, cover crops, and organic soil amendments. Cover crops are grown before the cash crop and used to replenish the soil with nitrogen and organic matter. Cover crops often also influence pest populations and can be selected based on site-specific growing conditions. Cover crops can be mulched on the soil surface to prevent erosion and weed emergence or can be tilled directly into the soil to incorporate nitrogen and organic matter. Green waste mulch is an increasingly used soil amendment. Many municipalities are encouraging farmers to use green waste mulch in farming systems as an alternative to green waste disposal in landfills. Reduced tillage was once restricted to large-seeded field crops but recent technical advances have made it a feasible option for vegetables and other horticultural crops. Alternative farming practices; however, are still only used by a small minority of growers. Increases in price for organic produce and changes in laws governing farming operations may increase adoption of alternatives to conventional agriculture.


2005 ◽  
Vol 45 (6) ◽  
pp. 635 ◽  
Author(s):  
P. L. Poulton ◽  
N. I. Huth ◽  
P. S. Carberry

Areas of brigalow (Acacia harpophylla) dominated landscapes in north-eastern Australia have declined drastically due to major clearing and agricultural expansion during the late 1940s and early 1960s. The inherently high salt content of the soils of this region present a potential downstream salinity hazard from groundwater recharge. Chronosequence analysis using paired chloride profiles from soil cores taken beneath brigalow remnants and adjacent pasture or cropping lands provide a tracer for quantifying historic recharge rates as a consequence of vegetation management and agricultural practice. Present day chloride levels are the direct result of past land management. In this paper we present the results of simulation studies used to benchmark historic management practice since clearing in terms of chloride leaching and drainage. These simulations estimated that 15.3 t/ha of chloride leached from the top 150 cm in 7 major drainage events (>15mm) over a 34-year period, and that these leaching events corresponded with peaks in rainfall cycles. Use of virtual experiments to investigate alternative cropping systems found significant increases in the frequency and magnitude of drainage events of no-tillage wheat compared with sorghum grown in a summer-rainfall region. Systems simulation can provide guidelines for designing cropping systems which best balance production with drainage objectives in dryland farming systems.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (&gt;0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile&gt;less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


Author(s):  
Firdoz Shahana ◽  
M. Goverdhan ◽  
S. Sridevi ◽  
B. Joseph

A field experiment was conducted during 2016-17 at AICRP on Integrated Farming Systems, Regional Sugarcane and Rice Research Station, Rudrur to diversify existing rice-rice cropping system with less water requiring crops under irrigated dry conditions for vertisols of Northern Telangana Zone. The experiment was laid out with twelve cropping systems as treatments in Randomized Block Design (RBD) with three replications. The twelve combinations of cropping systems tested during kharif and rabi seasons were rice – rice (check), maize + soybean (2:4) – tomato, maize + soybean (2:4) - rice, maize - sunflower + chickpea (2:4), maize - chickpea, Bt cotton + soybean (1:2) on broadbed – sesame + groundnut (2:4), Bt cotton - sesame + blackgram (2:4), soybean – wheat, soybean – sunflower + chickpea (2:4), turmeric – sesame, turmeric + soybean (1:2) on flat bed – bajra and turmeric + soybean (1:2) on broadbed – sesame + blackgram (2:4). On system basis, significantly higher productivity in terms of rice equivalent yield (REY) of 23830 kg ha-1 was recorded with turmeric+soybean (1:2) BBF– sesame+blackgram (2:4) turmeric – sesame cropping sequence. However it was on par with turmeric – sesame and turmeric + soybean (1:2) on flat bed – bajra crop sequence with productivity of 23332 kg ha-1 and 21389 kg ha-1 respectively. Lower productivity was recorded with rice-rice cropping system (10725 kg ha-1). Significantly higher system net returns were recorded with Bt. cotton – sesame + black gram (2:4) on BBF (Rs222838 ha-1) closely followed by Bt Cotton + Soybean (1:2) (BBF) - Sesamum + Groundnut (2:4) (Rs221160 ha-1) and Maize+soybean (2:4)–tomato (Rs212909 ha-1). Lower system net returns were recorded in conventional rice-rice system (Rs88179 ha-1). Bt. cotton – sesame + black gram (2:4) and Bt Cotton + Soybean (1:2) (BBF)- Sesamum + Groundnut ((2:4) and Maize+soybean (2:4)–tomato were economically superior with REE of 152.71%, 150.81% and 141.45%. Rice- Rice cropping adopted by majority of farmers is less productive and economically inferior indicating wider scope of diversifying existing rice- rice cropping system with high productive, economically viable cropping systems in vertisols of Northern Telangana Zone.


Soil Research ◽  
2009 ◽  
Vol 47 (3) ◽  
pp. 273 ◽  
Author(s):  
R. R. Young ◽  
B. Wilson ◽  
S. Harden ◽  
A. Bernardi

Australian agriculture contributes an estimated 16% of all national greenhouse gas emissions, and considerable attention is now focused on management approaches that reduce net emissions. One area of potential is the modification of cropping practices to increase soil carbon storage. Here, we report short–medium term changes in soil carbon under zero tillage cropping systems and perennial vegetation, both in a replicated field experiment and on nearby farmers’ paddocks, on carbon-depleted Black Vertosols in the upper Liverpool Plains catchment. Soil organic carbon stocks (CS) remained unchanged under both zero tillage long fallow wheat–sorghum rotations and zero tillage continuous winter cereal in a replicated field experiment from 1994 to 2000. There was some evidence of accumulation of CS under intensive (>1 crop/year) zero tillage response cropping. There was significant accumulation of CS (~0.35 Mg/ha.year) under 3 types of perennial pasture, despite removal of aerial biomass with each harvest. Significant accumulation was detected in the 0–0.1, 0.1–0.2, and 0.2–0.4 m depth increments under lucerne and the top 2 increments under mixed pastures of lucerne and phalaris and of C3 and C4 perennial grasses. Average annual rainfall for the period of observations was 772 mm, greater than the 40-year average of 680 mm. A comparison of major attributes of cropping systems and perennial pastures showed no association between aerial biomass production and accumulation rates of CS but a positive correlation between the residence times of established plants and accumulation rates of CS. CS also remained unchanged (1998/2000–07) under zero tillage cropping on nearby farms, irrespective of paddock history before 1998/2000 (zero tillage cropping, traditional cropping, or ~10 years of sown perennial pasture). These results are consistent with previous work in Queensland and central western New South Wales suggesting that the climate (warm, semi-arid temperate, semi-arid subtropical) of much of the inland cropping country in eastern Australia is not conducive to accumulation of soil carbon under continuous cropping, although they do suggest that CS may accumulate under several years of healthy perennial pastures in rotation with zero tillage cropping.


2020 ◽  
Author(s):  
Sagiv Kolkovski ◽  
Gideon Hulata

Abstract Israel is located in the Middle East between Africa, Asia and Europe. Like many semi-arid countries, it faces a water shortage due to limited rainfall and freshwater sources. However, in spite of climatic constraints and overall shortage of water, both agriculture and aquaculture are highly developed. Different methods and solutions to maximize water use were developed to deal with the impediments of water and weather. Agriculture is largely intensive and dependent on irrigation from reservoirs during the dry summer. These irrigation reservoirs are also used for fish culture, in integrated farming systems. Large-scale recirculation systems are in use in which water from fish ponds, and/or tanks in greenhouses or outdoors, is passed through large sediment ponds and water treatment systems before returning to the culture systems. A combination of irrigation reservoirs and fishponds/tanks is also used. Other combinations of fishponds and agricultural crops are also trialed and in use.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 841 ◽  
Author(s):  
Costanza Ceccanti ◽  
Marco Landi ◽  
Daniele Antichi ◽  
Lucia Guidi ◽  
Luigi Manfrini ◽  
...  

The sustainability of current farming systems has been questioned in the last decades, especially in terms of the environmental impact and mitigation of global warming. Also, the organic sector, which is supposed to impact less on the environment than other more intensive systems, is looking for innovative solutions to improve its environmental sustainability. Promisingly, the integration of organic management practices with conservation agriculture techniques may help to increase environmental sustainability of food production. However, little is known about the possible impact of conservation agriculture on the content of bioactive compounds in cash crops. For this reason, a two-year rotation experiment used 7 cash crops (4 leafy vegetables and 3 fruit crops) to compare integrated (INT), organic farming (ORG), and organic no-tillage (ORG+) systems to evaluate the possible influence of cropping systems on the nutritional/nutraceutical values of the obtained fruits and leafy vegetables. The results pointed out specific responses based on the species as well as the year of cultivation. However, cultivation with the ORG+ cropping system resulted in effective obtainment of fruits and vegetables with higher levels of bioactive compounds in several cases (11 out 16 observations). The ORG+ cropping system results are particularly promising for leafy vegetable cultivation, especially when ORG+ is carried out on a multi-year basis. Aware that the obtained data should be consolidated with longer-term experiments, we conclude that this dataset may represent a good starting point to support conservation agriculture systems as a possible sustainable strategy to obtain products with higher levels of bioactive compounds.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 1087-1101 ◽  
Author(s):  
D. Tsozué ◽  
J. P. Nghonda ◽  
D. L. Mekem

Abstract. The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha−1 NPK + 25 kg ha−1 of urea in DMC, F2: 200 kg ha−1 NPK + 50 kg ha−1 of urea in DMC and F3: 300 kg ha−1 NPK + 100 kg ha−1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha−1 in DMC, DS and TS, respectively, at F1, 1658, 1139 and 1192 kg ha−1 in DMC, DS and TS, respectively, at F2, and 2270, 2138 and 1780 kg ha−1 in DMC, DS and TS, respectively, at F3. pH values were 5.2–5.7 under DMC, 4.9–5.3 under DS and TS and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were higher in the control sample and DMC than in the other systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low pH values.


Sign in / Sign up

Export Citation Format

Share Document