scholarly journals Bioactive Properties of Fruits and Leafy Vegetables Managed with Integrated, Organic, and Organic No-Tillage Practices in the Mediterranean Area: A Two-Year Rotation Experiment

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 841 ◽  
Author(s):  
Costanza Ceccanti ◽  
Marco Landi ◽  
Daniele Antichi ◽  
Lucia Guidi ◽  
Luigi Manfrini ◽  
...  

The sustainability of current farming systems has been questioned in the last decades, especially in terms of the environmental impact and mitigation of global warming. Also, the organic sector, which is supposed to impact less on the environment than other more intensive systems, is looking for innovative solutions to improve its environmental sustainability. Promisingly, the integration of organic management practices with conservation agriculture techniques may help to increase environmental sustainability of food production. However, little is known about the possible impact of conservation agriculture on the content of bioactive compounds in cash crops. For this reason, a two-year rotation experiment used 7 cash crops (4 leafy vegetables and 3 fruit crops) to compare integrated (INT), organic farming (ORG), and organic no-tillage (ORG+) systems to evaluate the possible influence of cropping systems on the nutritional/nutraceutical values of the obtained fruits and leafy vegetables. The results pointed out specific responses based on the species as well as the year of cultivation. However, cultivation with the ORG+ cropping system resulted in effective obtainment of fruits and vegetables with higher levels of bioactive compounds in several cases (11 out 16 observations). The ORG+ cropping system results are particularly promising for leafy vegetable cultivation, especially when ORG+ is carried out on a multi-year basis. Aware that the obtained data should be consolidated with longer-term experiments, we conclude that this dataset may represent a good starting point to support conservation agriculture systems as a possible sustainable strategy to obtain products with higher levels of bioactive compounds.

1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2019 ◽  
Vol 17 (1) ◽  
pp. 49-63
Author(s):  
K Pariyar ◽  
A Chaudhary ◽  
P Sapkota ◽  
S Sharma ◽  
CB Rana ◽  
...  

The effects of two tillage methods (zero tillage and conventional tillage), two residue managements (residue kept and residue removed) and two levels of cropping system (maize + soybean and sole maize) were studied over 3 years (2015-2017) at Dailekh district of Nepal. Arun-2 and Puja were the varieties of maize and soybean used respectively, followed by winter wheat. The results revealed that the maize + soybean system had significantly higher plant population and ear population (34.83 thousands ha-1 and 34.35 thousands ha-1, respectively), grains per row (37.1), ear length (16.6 cm) and 20.5% higher grain yield as compared to sole maize. The highest maize equivalent yield (7.92 t ha-1) was recorded in maize + soybean as compared to the lower grain yield equivalent (7.06 t ha-1) in sole maize. Zero tillage accounted relatively higher benefits (high net income and B:C ratio) as compared to conventional tillage. The residue kept plot resulted significantly higher B:C ratio (2.41) than the residue removed (2.11) and the maize + soybean recorded 82.5% greater B:C ratio compared to sole maize. Net annual income was significantly higher in zero tillage, residue kept and maize + soybean system (NRs. 223072.00, 222958.00 and 269016.00 ha-1 respectively). Such combinations are recommended for Dailekh district of Nepal to have profitable crop productivity. SAARC J. Agri., 17(1): 49-63 (2019)


2021 ◽  
Author(s):  
Laura Morales ◽  
María T Domínguez ◽  
Mª Belén Herrador ◽  
Engracia Madejón ◽  
Elena Fernández-Boy

<p>How climate change will affect soil functioning is a major concern, especially in Mediterranean agrosystems, where, according to climate change projections, the occurrence of extreme temperatures and drought events will be increased. The main objective of our experiment was to evaluate the effect of land management (tillage system) on soil resilience against a simulated dry-rewetting cycle. Soil samples were collected from an in-situ field experiment established in 2008 in the Guadalquivir Valley, where conservation agriculture practices have been tested. Three different land management practices under a typical Mediterranean wheat-legume rotation system were compared: 1) traditional tillage (TT), 2) minimum tillage (MT) and 3) no-tillage (NT). Following our hypothesis, conservation agriculture practices (reduced tillage and no-tillage) may allow a more mature soil microbial community by reducing soil perturbation, and this would result in higher resistance of soil functioning against drought periods. Soil enzyme activities (β-glucosidase, phosphatase, acetylglucosaminidase, aminopeptidase, and dehydrogenase activities), microbial functional diversity (Microresp method), and soil DNA concentration (as an index of microbial biomass) were analyzed in a base-line sampling. Afterwards, a dry-rewetting cycle was simulated under controlled conditions. 8 subsamples of 50g from each soil sample were hydrated to reach 70% of each soil water holding capacity (WHC) and kept in those conditions for a pre-incubation period of 15 days. After this period, half of the replicates were let dry for 12 days (drought), while the others were maintained at 70% WFC (controls). Finally, all replicates were rehydrated again to the initial water content during a 14 days rewetting period. During this cycle, soil respiration rates were periodically measured to study the evolution of soil microbial activity. Our results showed that initial respiration rates were slightly higher in MT compared to NT (p<0.1), likely due to higher organic C and N content in the MT soils. Drought extremely reduced respiration rates in the three treatments, but the results did not show a clear pattern among treatments. During the rewetting period, respiration rates were significantly higher in drought samples in comparison with the controls, while no significant differences were found for the land management treatments. Besides, land management practices did not have a significant effect on soil DNA concentration, functional diversity of the microbial community, or enzyme activities. To conclude, the absence of a clear effect of land management practices on soil resilience to drought may be due to the experimental conditions. An in-situ experiment will allow us to determine if tillage reduction enhances soil resilience to moisture stress.</p>


2019 ◽  
Vol 11 (17) ◽  
pp. 4522 ◽  
Author(s):  
Magdalena Ruiz ◽  
Encarna Zambrana ◽  
Rosario Fite ◽  
Aida Sole ◽  
Jose Luis Tenorio ◽  
...  

The increasing spread of conservation agriculture demands that the next generation of wheat varieties includes cultivars capable of maintaining satisfactory yields with lower inputs and under uncertain climate scenarios. On the basis of the genetic gains achieved during decades of selection oriented to yield improvements under conventional crop management, it is important that novel breeding targets are defined and addressed. Grain yield, yield-related traits, and phenological and morphological characteristics, as well as functional quality parameters have been analyzed for six varieties each of bread and durum wheat, under minimum tillage and no-tillage. During the three-year experiment, the climatic conditions at the field trial site were characterized by low rainfall, although different degrees of aridity—from moderate to severe—were experienced. Differences were found between these two soil management practices in regard to the varieties’ yield stability. A positive influence of no-tillage on traits related to grain and biomass yield was also evidenced, and some traits among the examined seemed involved in varietal adaptation to a particular non-conventional tillage system. The study also confirmed some breeding targets for improved performance of wheat genotypes in conservation agroecosystems. These traits were represented in the small set of traditional varieties analysed.


Author(s):  
Laura Masilionytė ◽  
Stanislava Maikštėnienė ◽  
Aleksandras Velykis ◽  
Antanas Satkus

The paper presents the research conducted at the Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry on a clay loam Gleyic Cambisol during the period of 2006–2010. The research investigated the changes of mineral nitrogen in soil growing catch crops during the winter wheat post-harvest period and incorporating their biomass into the soil for green manure. Green manure implications for environmental sustainability were assessed. The studies were carried out in the soil with a low (1.90–2.00%) and moderate (2.10–2.40%) humus content in organic and sustainable cropping systems. The crop rotation, expanded in time and space, consisted of red clover (Trifolium pretense L.) → winter wheat (Triticum aestivum L.) → field pea (Pisum sativum L.) → spring barley (Hordeum vulgare L.) with undersown red clover. Investigations of mineral nitrogen migration were assessed in the crop rotation sequence: winter wheat + catch crops → field pea. Higher organic matter and nitrogen content in the biomass of catch crops were accumulated when Brassisaceae (white mustard, Sinapis alba L.) was grown in a mixture with buckwheat (Fagopyrum esculentum Moench.) or as a sole crop, compared with oilseed radish (Raphanus sativus var. Oleiferus Metzg.) grown with the long-day legume plants blue lupine (Lupinus angustifolius L.). Mineral nitrogen concentration in soil depended on soil humus status, cropping system and catch crop characteristics. In late autumn there was significantly higher mineral nitrogen concentration in the soil with moderate humus content, compared with soil with low humus content. The lowest mineral nitrogen concentration in late autumn in the 0–40 cm soil layer and lower risk of leaching into deeper layers was measured using organic cropping systems with catch crops. The highest mineral nitrogen concentration was recorded in the sustainable cropping system when mineral nitrogen fertilizer (N30) was applied for winter wheat straw decomposition. In the organic cropping system, the incorporation of catch crop biomass into soil resulted in higher mineral nitrogen reserves in soil in spring than in the sustainable cropping system, (mineral nitrogen fertilizer (N30) applied for straw decomposition in autumn and no catch crop grown). Applying organic cropping systems with catch crops is an efficient tool to promote environmental sustainability.


Soil Research ◽  
1999 ◽  
Vol 37 (2) ◽  
pp. 279 ◽  
Author(s):  
M. J. Bell ◽  
P. W. Moody ◽  
S. A. Yo ◽  
R. D. Connolly

Chemical and physical degradation of Red Ferrosols in eastern Australia is a major issue necessitating the development of more sustainable cropping systems. This paper derives critical concentrations of the active (permanganate-oxidisable) fraction of soil organic matter (C1) which maximise soil water recharge and minimise the likelihood of surface runoff in these soils. Ferrosol soils were collected from commercial properties in both north and south Queensland, while additional data were made available from a similar collection of Tasmanian Ferrosols. Sites represented a range of management histories, from grazed and ungrazed grass pastures to continuously cropped soil under various tillage systems. The concentration of both total carbon (C) and C1 varied among regions and farming systems. C1 was the primary factor controlling aggregate breakdown, measured by the percentage of aggregates <0·125 mm (P125) in the surface crust after simulated rainfall. The rates of change in P125 per unit change in C1 were not significantly different (P < 0·05) for soils from the different localities. However, soils from the coastal Burnett (south-east Queensland) always produced lower P125 (i.e. less aggregate breakdown) than did soils from the inland Burnett and north Queensland locations given the same concentration of C1. This difference was not associated with a particular land use. The ‘critical’ concentrations of C1 for each region were taken as the C1 concentrations that would allow an infiltration rate greater than or equal to the intensity of a 1 in 1 or 1 in 10 year frequency rainfall event of 30 min duration. This analysis also provided an indication of the risk associated with the concentrations of C1 currently characterising each farming system in each rainfall environment. None of the conventionally tilled Queensland Ferrosols contained sufficient C1 to cope with rainfall events expected to occur with a 1 in 10 frequency, while in many situations the C1 concentration was sufficiently low that runoff events would be expected on an annual basis. Our data suggest that management practices designed both to maximise C inputs and to maintain a high proportion of active C should be seen as essential steps towards developing a more sustainable cropping system.


2014 ◽  
Vol 2 (3) ◽  
pp. 328-335
Author(s):  
Saugat Dahal ◽  
Tika Bahadur Karki ◽  
Lal Prasad Amgain ◽  
Birendra Kumar Bhattachan

With the aim of developing crop management technologies that reduce the yield gap of maize (Zea mays L.) in Nepal, a study was carried-out to determine whether the grain yield of maize could be manipulated through tillage, residue, and nutrient and weed management practices. The effect of tillage (conventional and no tillage), residue (residue retained and residue removed), fertilizer (recommended doses of fertilizer and farmers’ doses of fertilizer) and weed management practices (herbicide use and manual weeding) on phenology and grain yield of maize were investigated under maize-rice cropping system in Rampur, Nepal during 2013. The experimental results revealed that no tillage had significant effect on grain yield (6.64 Mg ha-1) and phenological parameters like days to silking, physiological maturity and seed fill duration. Similarly, residue retained treatment had significant effect on grain yield (7.02 Mg ha-1) and phenological parameters. Research dose of fertilizer had significant effect on phenological parameters and grain yield (8.42 Mg ha-1). However, weed management factor did not influence significantly on grain yield and phenological parameters. The grain yield increased in no tillage by 23.19% over conventional tillage, residue retained by 39.84% over residue removed, recommended doses of fertilizer by 132.60% over farmer dose of fertilizer. Thus, no tillage, residue retention, recommended doses of fertilizer and use of herbicide for weed management can be alternative technologies for sustainable higher grain yield. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.11001Int J Appl Sci Biotechnol, Vol. 2(3): 328-335  


2017 ◽  
Vol 9 (9) ◽  
pp. 210 ◽  
Author(s):  
M. A. Quddus ◽  
M. J. Abedin Mian ◽  
H. M. Naser ◽  
M. A. Hossain ◽  
S. Sultana

The experiment was conducted to measure crop yields, nutrient concentration, nutrient uptake and balance by using different nutrient management practices for mustard-mungbean-T. aman rice cropping system in calcareous soil of Madaripur, Bangladesh. Different nutrient management practices were absolute nutrient control (T1); farmer’s practice (T2); AEZ based nutrient application (T3) and soil test based nutrient application (T4). The practices were compared in a randomized completely block design with three replications over two consecutive years. The average yield through application of soil test based nutrient (T4) was showed effective to get highest yields of mustard (1530 kg ha-1), mungbean (1632 kg ha-1) and T. aman rice (4729 kg ha-1). The same practices (T4) exhibited the greatest nutrients uptake by the test crops. The apparent balance of N and K was negative; however it was less negative and less deficiency detect in T4 treatment. Positive balance of P observed in all practices except in T1. There was a positive S balance (7.60 kg ha-1) in T4 but negative in T1, T2 and T3. Zinc balance was found positive in T3 and T4 and negative in T1 and T2. Boron balance in the system was neutral or slightly positive in T1 and negative in T2 but positive in T3 and T4. Organic matter, N, P, S, Zn and B status in soil was improved by T4 treatment. The results suggested that the soil test based nutrient application is viable and sustainable for mustard-mungbean-T. aman rice cropping system in calcareous soils of Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document