Conservation tillage increases in soil water storage, soil animal populations, grain yield, and response to fertiliser in the semi-arid subtropics

1995 ◽  
Vol 35 (2) ◽  
pp. 223 ◽  
Author(s):  
BJ Radford ◽  
AJ Key ◽  
LN Robertson ◽  
GA Thomas

We compared 4 tillage practices (traditional, stubble mulch, reduced, no tillage) during 10 years under rainfed conditions on an alluvial soil in the semi-arid subtropics of central Queensland. In the final 4 years, responses to applied fertiliser nitrogen (N), sulfur (S), and zinc (Zn) were determined. We measured soil water storage, soil nitrate accumulation, grain yield (sorghum, wheat), grain protein content, and populations of soil macrofauna, with the aim of identifying soil-conserving practices that also produce high yields of high quality grain. Stubble mulch, reduced tillage, and no tillage all outyielded traditional tillage when soil fertility was adequate. With applied N, S, and Zn, the mean wheat yields from traditional, stubble mulch, reduced, and no tillage were 2.44, 3.32, 3.46, and 3.64 t/ha, respectively. The yield responses to tillage practices were due to increases in storage of soil water or efficiency of crop water use or both. Populations of soil macrofauna averaged (per m2) 19 (traditional tillage), 21 (stubble mulch), 33 (reduced tillage), and 44 (no tillage). The effect of the tillage practices on soil animal populations may be a factor contributing to the measured differences in soil water storage and water use efficiency. We conclude that conservation tillage practices can greatly increase grain yields, provided crop and fallow management practices are appropriate. Potential yield advantages are realised if crop establishment, crop nutrition; and control of weeds, bests, and diseases ark adequate.

2013 ◽  
Vol 27 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Jessica A. Kelton ◽  
Andrew J. Price ◽  
Michael G. Patterson ◽  
C. Dale Monks ◽  
Edzard van Santen

Amaranthuscontrol in cotton can be difficult with the loss of glyphosate efficacy, especially in conservation-tillage cropping systems. Research was conduction from 2006 to 2008 at EV Smith Research Center, Shorter, AL, to determine the level of glyphosate-susceptibleAmaranthuscontrol provided by four initial tillage and herbicide treatments, including 1) moldboard plowing followed by a single-pass disking and field cultivation plus pendimethalin at 1.2 kg ai ha−1preplant incorporation (PPI), 2) two-pass disking followed by field cultivation plus pendimethalin at 1.2 kg ha−1PPI, 3) no tillage including an application of pendimethalin at 1.2 kg ha−1PRE, or 4) no tillage without pendimethalin in 2006. No further tillage practices or pendimethalin applications were utilized after study initiation. Initial tillage operations, including inversion with disking or disking twice, resulted inAmaranthusdensity of ≤ 4 plants m−2and 47 to 82% control, whereas no-tillage treatments had ≥ 4 plants m−2and 14 to 62% control. Subsequent applications of PRE herbicides included fluometuron at 1.68 kg ai ha−1or prometryn at 1.12 kg ai ha−1and provided 53 to 98% and 55 to 93% control, respectively, and reducedAmaranthusdensity compared to no PRE herbicide to < 2 plants m−2, regardless of tillage treatment. A POST application of glyphosate at 1.0 kg ae ha−1improved control in conjunction with almost all treatments in each year. Results indicate that a one-time tillage operation followed by a return to reduced tillage may aid in the reduction ofAmaranthusdensity when used with PRE-applied herbicides; however, this system will likely not provide adequate control when high population densities of glyphosate-resistantAmaranthusare present, thus highlighting the need for a highly efficacious POST herbicide system.


2019 ◽  
Vol 194 ◽  
pp. 104319 ◽  
Author(s):  
Kathryn L Page ◽  
Yash P. Dang ◽  
Ram C. Dalal ◽  
Steven Reeves ◽  
Greg Thomas ◽  
...  

2013 ◽  
Vol 126 ◽  
pp. 26-33 ◽  
Author(s):  
Imene Jemai ◽  
Nadhira Ben Aissa ◽  
Saida Ben Guirat ◽  
Moncef Ben-Hammouda ◽  
Tahar Gallali

1990 ◽  
Vol 30 (1) ◽  
pp. 83 ◽  
Author(s):  
JM Marley ◽  
JW Littler

Five experiments, 1 of which was continued over 3 years on the same site, were established on non-sloping Darling Downs cracking clays to compare conventional, reduced and zero tillage systems of fallowing for annual wheat production. Average values for soil water storage efficiency (percentage of fallow rainfall stored) were 14.0% for stubble burnt and conventional cultivation with tined implements (TI); 19.8% for stubble retained and conventional cultivation with tined implements (T2); 25.3% for stubble retained and zero tillage with chemical control of fallow weed growth (T3); 21.1% for stubble retained with no tillage but chemical weed control until early March, followed by cultivations with tined implements until sowing (T4); and 21.1% for stubble retained and fallow cultivations with a sweep plough (T6). Nitrogen mineralisation during fallow periods was measured over 3 seasons at the final site. No major treatment differences occurred. A small mean grain yield advantage of 4.6% to T3 over T1 was established in those seasons when improved fallow water storage was obtained with T3. The lack of yield improvement by reduced tillage treatments (T4, T5 and T6) over T1 is attributed largely to above-average crop period rainfall in those seasons when the treatments had resulted in improved presowing water.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Sign in / Sign up

Export Citation Format

Share Document