Rooting depth and plant water relations explain species distribution patterns within a sandplain landscape

2004 ◽  
Vol 31 (5) ◽  
pp. 423 ◽  
Author(s):  
Philip K. Groom

Tree and shrub species of the Banksia woodlands on the sandplains of northern Swan Coastal Plain, Western Australia possess a range of strategies to avoid or tolerate soil water deficits during the annual summer drought. Shallow-rooted shrub species (< 1 m rooting depth) inhabit a range of locations in the landscape, from top of dune crests to wetland embankments. These are the most drought-tolerant of all sandplain species, surviving extremely low summer soil water potentials (< –7 MPa) and tissue water deficits by significantly reducing their transpirational water loss (< 0.2 mmol m–2 s–1). This is in contrast to the few shallow-rooted species restricted to low-lying or seasonally waterlogged areas which are reliant on subsurface soil moisture or groundwater to maintain their relatively high summer water use. Recent studies of water source usage of selected Banksia tree species have shown that these deep-rooted species access groundwater up to a maximum depth of 9 m depth during the summer months, or soil moisture at depth when groundwater was greater than maximum rooting depths, depending on the species. Medium- and deep-rooted (1–2 m and > 2 m, respectively) shrub species cope with the summer soil drying phase and related decrease in groundwater levels by conserving leaf water loss and incurring predawn water potentials between –1 and –4 MPa, enabling them to occur over a range of topographic positions within the sandplain landscape.


Author(s):  
A. Wahab ◽  
H. Talleyrand ◽  
M. A. Lugo-López

Grain and stover yields of RS 671 grain sorghum were measured at Barranquitas in an Oxisol and at Corozal in an Ultisol. Measurements were made of weather factors, soil moisture content and tension, plant growth, water deficits and rooting depths. At each site a plot was irrigated as often as necessary to maintain a soil water tension of less than 1 bar. Nonirrigated plots at Corozal were watered whenever necessary to prevent plants from wilting permanently. During a prolonged drought and at grain filling, sorghum extracted water in the Oxisol to a depth of 120 cm. Plants became water stressed after the soil water tension at a depth of 90 cm reached 15 bars. In the Ultisol, sorghum plants were unable to effectively extract available soil moisture at depths below 45 cm. Both plant growth and grain yield were greater in the Oxisol than in the Ultisol. The relative soil compaction of the Ultisol was greater than that of the Oxisol.



Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 720 ◽  
Author(s):  
Yolanda Cantón ◽  
Sonia Chamizo ◽  
Emilio Rodriguez-Caballero ◽  
Roberto Lázaro ◽  
Beatriz Roncero-Ramos ◽  
...  

Arid and semi-arid ecosystems are characterized by patchy vegetation and variable resource availability. The interplant spaces of these ecosystems are very often covered by cyanobacteria-dominated biocrusts, which are the primary colonizers of terrestrial ecosystems and key in facilitating the succession of other biocrust organisms and plants. Cyanobacterial biocrusts regulate the horizontal and vertical fluxes of water, carbon and nutrients into and from the soil and play crucial hydrological, geomorphological and ecological roles in these ecosystems. In this paper, we analyze the influence of cyanobacterial biocrusts on water balance components (infiltration-runoff, evaporation, soil moisture and non-rainfall water inputs (NRWIs)) in representative semiarid ecosystems in southeastern Spain. The influence of cyanobacterial biocrusts, in two stages of their development, on runoff-infiltration was studied by rainfall simulation and in field plots under natural rainfall at different spatial scales. Results showed that cover, exopolysaccharide content, roughness, organic carbon, total nitrogen, available water holding capacity, aggregate stability, and other properties increased with the development of the cyanobacterial biocrust. Due to the effects on these soil properties, runoff generation was lower in well-developed than in incipient-cyanobacterial biocrusts under both simulated and natural rainfall and on different spatial scales. Runoff yield decreased at coarser spatial scales due to re-infiltration along the hillslope, thus decreasing hydrological connectivity. Soil moisture monitoring at 0.03 m depth revealed higher moisture content and slower soil water loss in plots covered by cyanobacterial biocrusts compared to bare soils. Non-rainfall water inputs were also higher under well-developed cyanobacterial biocrusts than in bare soils. Disturbance of cyanobacterial biocrusts seriously affected the water balance by increasing runoff, decreasing soil moisture and accelerating soil water loss, at the same time that led to a very significant increase in sediment yield. The recovery of biocrust cover after disturbance can be relatively fast, but its growth rate is strongly conditioned by microclimate. The results of this paper show the important influence of cyanobacterial biocrust in modulating the different processes supporting the capacity of these ecosystems to provide key services such as water regulation or erosion control, and also the important impacts of their anthropic disturbance.



1971 ◽  
Vol 24 (3) ◽  
pp. 423 ◽  
Author(s):  
JR Mcwilliam ◽  
PJ Phlllips

Under special conditions where soil-moisture diffusivity and seed-soil contact are non-limiting, the osmotic and matric potentials of the substrate were found to be equivalent in their effect on the germination of seeds of ryegrass and dehulled phalaris over a range of water potentials from 0 to -15 bars. However, with intact phalaris seeds it appears that the seed coat constitutes a large resistance to the absorption of soil water, and under these conditions the equivalence between osmotic and matric potential no longer holds, and results of germination under osmotic stress must be used with caution in predicting the germination behaviour of seeds in dry soil.



HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553f-554
Author(s):  
A.K. Alva ◽  
A. Fares

Supplemental irrigation is often necessary for high economic returns for most cropping conditions even in humid areas. As irrigation costs continue to increase more efforts should be exerted to minimize these costs. Real time estimation and/or measurement of available soil water content in the crop root zone is one of the several methods used to help growers in making the right decision regarding timing and quantity of irrigation. The gravimetric method of soil water content determination is laborious and doesn't suite for frequent sampling from the same location because it requires destructive soil sampling. Tensiometers, which measure soil water potential that can be converted into soil water content using soil moisture release curves, have been used for irrigation scheduling. However, in extreme sandy soils the working interval of tensiometer is reduced, hence it may be difficult to detect small changes in soil moisture content. Capacitance probes which operate on the principle of apparent dielectric constant of the soil-water-air mixture are extremely sensitive to small changes in the soil water content at short time intervals. These probes can be placed at various depths within and below the effective rooting depth for a real time monitoring of the water content. Based on this continuous monitoring of the soil water content, irrigation is scheduled to replenish the water deficit within the rooting depth while leaching below the root zone is minimized. These are important management practices aimed to increase irrigation efficiency, and nutrient uptake efficiency for optimal crop production, while minimizing the impact of agricultural non-point source pollutants on the groundwater quality.



2007 ◽  
Vol 37 (7) ◽  
pp. 1263-1271 ◽  
Author(s):  
Peter A. Beedlow ◽  
David T. Tingey ◽  
E. Henry Lee ◽  
Donald L. Phillips ◽  
Christian P. Andersen ◽  
...  

Large conifers, such as Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco var. menziesii), purportedly draw on water stored in their boles during periods of summer drought. The relation of seasonal changes in soil moisture to sapwood water content was evaluated in four forest stands dominated by mature Douglas-fir along a transect from the Pacific Coast to 1200 m in the western Cascade Mountains of Oregon, USA. The sites varied in stand age, elevation, topography, and soil characteristics, including available soil water capacity. At two sites, gravimetric measures of sapwood relative water content (SRWC) were taken approximately every 4 weeks from May 2002 through July 2004; two additional sites were similarly measured from February 2003 through July 2004. Automated meteorological stations located on the sites and in adjacent open areas continuously monitored weather and soil moisture. Plant-available soil water (ASW) in the upper 0.6 m of soil reached minimum values during the summer drought and rewetted during fall and winter. Large seasonal changes in ASW did not result in corresponding changes in SRWC. Minimum SRWC was lower at sites with higher ASW. At all sites, Douglas-fir trees apparently regulate water loss to maintain consistent (±10%) bole water content throughout the year despite large changes in soil moisture.



2021 ◽  
Author(s):  
Angela Gabriela Morales Santos ◽  
Reinhard Nolz

&lt;p&gt;Monitoring soil water status is one key option to optimise water use in agriculture. Soil moisture sensors are widely used for investigating available soil water to optimally adapt irrigation scheduling to crop water requirements. Although reliable measurements are subject to proper soil-specific calibration of sensors, meaningful calibration functions are not always available. Another question is the plausibility of soil water monitoring under field conditions. The objective of this study was to calibrate four multi-sensor capacitance probes in the laboratory and &amp;#160;to evaluate the calibrated water content readings under natural conditions in an irrigated field by means of a modelling approach.&lt;/p&gt;&lt;p&gt;The multi-sensor capacitance probes (SM1 by ADCON Telemetry) were of 90&amp;#160;cm length and contained nine sensors (S1 to S9) at 10 cm spacing. The digital output values were given in scaled frequency units (SFU). The laboratory calibration was carried out on sandy loam and sand. Measurements were undertaken by placing the probes inside a PVC tube backfilled with soil at different water contents. Soil samples were collected using metallic cylinders of 250 cm&lt;sup&gt;3&lt;/sup&gt;, from which volumetric water content (&amp;#952;) was determined gravimetrically. The sensor readings in soil were normalised by using sensor readings in air and water as lower and upper limit, respectively. The pairs of measured &amp;#952; and normalised SFU were related to each other by curve fitting. For each soil type, eight sensor-specific calibration functions were developed that allowed the calculation of &amp;#952; in cm&lt;sup&gt;3&lt;/sup&gt; cm&lt;sup&gt;&amp;#8722;&lt;/sup&gt;&lt;sup&gt;3&lt;/sup&gt; from SM1 readings.&lt;/p&gt;&lt;p&gt;After calibration, the SM1 probes were installed in a field in Obersiebenbrunn, Lower Austria, where sandy loam is the main soil. Three of the probes monitored irrigated plots and the fourth a rainfed plot. To obtain reference values, one HydraProbe soil moisture sensor (Stevens Water Monitoring Systems) was installed in 20 cm depth, near each SM1. The average daily &amp;#952;-values from the S2 (20 cm depth) contained in each SM1 probe were compared to the water fraction collected with the corresponding HydraProbe. Moreover, the SM1 &amp;#952;-values were used to determine the daily soil water depletion in the root zone (Dr) for a rooting depth of 1&amp;#160;m. The obtained Dr datasets were compared to Dr simulated using CROPWAT 8.0 by FAO.&lt;/p&gt;&lt;p&gt;The field results showed that the SM1 probes were able to reproduce the HydraProbe dynamics of wetting and drying periods during the crop season. Nevertheless, a considerable difference was noted between the sensor measurements. The SM1 overestimated &amp;#952; in the irrigated plots, whereas it underestimated &amp;#952; in the rainfed plot. The discrepancies can be attributed mainly to the different physical mechanisms behind the sensors and to the unfeasible reproduction of field bulk density and soil structure in the laboratory. Furthermore, the operational frequency and permittivity response of the SM1 probes should be revised for future versions. The simulation results showed that the observed Dr values were more consistent with CROPWAT Dr results at the end of the simulation period, suggesting that the SM1 required several weeks to consolidate and give representative &amp;#952;-values for the soil profile.&lt;/p&gt;



1979 ◽  
Vol 27 (1) ◽  
pp. 1 ◽  
Author(s):  
G Weste ◽  
K Vithanage

Chlamydospore survival was investigated for six soil types, collected from disease-free areas of native forest in Victoria, in 50-g packs of non-sterile, unamended soils and gravels at five different matric soil water potentials ( ψ ). No chlamydospores survived in gravel free from OM, and only one chlamydospore survived at ψ -3000 kPa. In other packs the numbers of chlamydospores declined for 2 months then increased markedly at 4-6 months. Many chlamydospores remained viable for 8 months and some for 10 months despite the use of non-sterile soil and the absence of hosts. Maximum numbers survived in gravel from the Brisbane Ranges 6 and 8 months after inoculation at ψ -500 kPa. Decreasing soil moisture appeared to stimulate chlamydospore formation while a low rganic matter content and small numbers of microorganisms increased survival.



Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1277
Author(s):  
Jian Hu ◽  
Da Lü ◽  
Feixiang Sun ◽  
Yihe Lü ◽  
Youjun Chen ◽  
...  

Soil moisture is a central theme in eco-hydrology. Topography, soil characteristics, and vegetation types are significant factors impacting soil moisture dynamics. However, water loss (evapotranspiration and leakage) and its factors of the self-organized vegetation pattern are not clear, which has significant ecologic functions and contributes to different hydrological ecosystem services. From an eco-hydrological point of view, we relied on the observation of rainfall, soil moisture, and soil temperature in the growing season of a drought year to compare soil moisture and temperature dynamics in terms of frequency/probability distribution and water loss among three typical vegetation types in the Qilian Mountains, China. The results indicated that shrubland (the semi-shaded slope) had the highest average soil moisture at the surface soil (0–40 cm) and soil profile during the growing season, while grassland (the south-facing slope) had the lowest daily average soil moisture and highest daily average soil temperature at the surface soil and soil profile. Spruce forest (the shaded slope) had the lowest daily average soil temperature at the surface soil and soil profile (p < 0.001). Water loss among the three vegetation types has a clear positive relationship with soil water content and a negative relationship with soil temperature. The values of water loss between values of water loss at the wilting point and maximum evapotranspiration point tend to occur in wetter soil moisture under the spruce forest and shrubland, whereas that of grassland emerges in drier soil moisture. The spruce forest and shrubland experienced higher water loss than the grassland. Although the spruce forest and shrubland had a better capacity to retain soil water, they also consumed more soil water than the grassland. Soil moisture may be the main factor controlling the difference in water loss among the three vegetation types. These findings may contribute to improving our understanding of the relationship between the soil moisture dynamics and vegetation pattern, and may offer basic insights for ecosystem management for upstream water-controlled mountainous areas.



2012 ◽  
Vol 12 (12) ◽  
pp. 5537-5562 ◽  
Author(s):  
P. Büker ◽  
T. Morrissey ◽  
A. Briolat ◽  
R. Falk ◽  
D. Simpson ◽  
...  

Abstract. The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto), and subsequent O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum gsto, soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate gsto directly to soil water content and potential provide adequate estimates of soil moisture and influence on gsto such that they are suitable to be used to assess the potential risk posed by O3 to forest trees across Europe.



2011 ◽  
Vol 11 (12) ◽  
pp. 33583-33650 ◽  
Author(s):  
P. Büker ◽  
T. Morrissey ◽  
A. Briolat ◽  
R. Falk ◽  
D. Simpson ◽  
...  

Abstract. The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments so far has been the approximation that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto), and ultimately O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. The soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods which incorporate hydraulic resistance and plant capacitance perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water lost from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum stomatal conductance, soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate gsto directly to soil water content and potential provide adequate estimates of soil moisture and influence on gsto such that they are suitable to be used to assess the potential risk posed by O3 to forest trees across Europe.



Sign in / Sign up

Export Citation Format

Share Document