Leaf shrinkage decreases porosity at low water potentials in sunflower

2007 ◽  
Vol 34 (1) ◽  
pp. 24 ◽  
Author(s):  
An-Ching Tang ◽  
John S. Boyer

Leaves often shrink significantly when soil water is limited. For gas exchange measurmements, the shrinkage can require correction for changing amounts of tissue in the apparatus. In sunflower plants (Helianthus annuus L.), a comparison was made between mathematically-corrected transpiration and clamping leaves at their original turgid size without mathematical correction. These methods should give the same result, but transpiration was substantially greater in the clamped leaves than in the shrunken and mathematically-corrected ones. Because the clamped leaves remained at their original turgid area, wounding was not a factor. If shrunken leaves were stretched to their original area, transpiration increased immediately and was traced to increased leaf conductance to water vapor and greater porosity for bulk air movement through the leaf, implicating the stomata. Releasing the leaf caused each of these properties to return to the tightened condition. When all the leaves were held at their original size during a soil water deficit, whole-plant water use was greater than when the leaves shrank naturally. It was concluded that shrinkage decreases the porosity of sunflower leaves. This natural tightening can be disrupted by stretching leaves during gas exchange measurements. However, stretching provides a useful means of changing leaf porosity for experimental purposes.

2017 ◽  
Vol 44 (2) ◽  
pp. 267 ◽  
Author(s):  
Katrina J. Broughton ◽  
Renee A. Smith ◽  
Remko A. Duursma ◽  
Daniel K. Y. Tan ◽  
Paxton Payton ◽  
...  

Alterations in climate factors such as rising CO2 concentration ([CO2]), warming and reduced precipitation may have significant impacts on plant physiology and growth. This research investigated the interactive effects of elevated [CO2], warming and soil water deficit on biomass production, leaf-level physiological responses and whole-plant water use efficiency (WUEP) in cotton (Gossypium hirsutum L.). Cotton was grown in the glasshouse under two [CO2] treatments (CA, 400 µL L–1; CE, 640 µL L–1) and two temperature treatments (TA, 28°C : 17°C day : night; TE, 32°C : 21°C day : night). Plants were subjected to two progressive water deficit cycles, with a 5-day recovery period between the water deficit periods. CE increased vegetative biomass and photosynthetic rates, and decreased stomatal conductance in TA; however, these responses to CE were not evident under TE. CE increased whole-plant water loss under TA, but increased WUEp, whereas increased whole-plant water loss in TE decreased WUEp regardless of atmospheric [CO2]. CE may provide some positive growth and physiological benefits to cotton at TA if sufficient water is available but CE will not mitigate the negative effects of rising temperature on cotton growth and physiology in future environments.


1997 ◽  
Vol 122 (2) ◽  
pp. 285-289 ◽  
Author(s):  
Marc van Iersel

Mechanical conditioning can be used to control the height of vegetable and ornamental transplants. Previous research indicated that brushing plants increases cuticular water loss from detached leaves, which may be an indication of decreased drought resistance. This might decrease post-transplant survival of the plants. The objectives of this study were to determine the effect of brushing on growth and gas exchange by tomato (Lycopersicon esculentum Mill.) and quantify whole-plant water use during a slow dry-down period. Tomato plants were grown from seed in a greenhouse during Fall 1995. The brushing treatment started 11 days after seeding and consisted of 40 strokes, twice each day. After 39 days of treatment, brushing reduced height 32%, leaf area 34%, and shoot dry mass 29% compared to control plants. Brushing did not affect leaf gas exchange. Brushed plants had a higher stem water flux than control plants during the first 3 days of a 6-day dry-down period. Stem water flux was lower than that of control plants later in the cycle, presumably because brushed plants used more of the available water during the first 3 days. On the third day of the dry-down period, leaf conductance of brushed plants was 35% higher than that of control plants, resulting in a 10% higher transpiration rate per unit leaf area. Because brushed plants had less leaf area than controls, differences in whole-plant water use were small. Time to wilting was similar for the brushed and unbrushed plants (6 days after withholding water). It seems unlikely that brushing would have a major effect on drought tolerance of plants.


2008 ◽  
pp. 397-422 ◽  
Author(s):  
Ronald J. Ryel ◽  
Carolyn Y. Ivans ◽  
Michael S. Peek ◽  
A. Joshua Leffler

2015 ◽  
Vol 3 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Hipólito Medrano ◽  
Magdalena Tomás ◽  
Sebastià Martorell ◽  
Jaume Flexas ◽  
Esther Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document