Different carbon sources and their concentrations change alkaloid production and gene expression in Catharanthus roseus shoots in vitro

2021 ◽  
Vol 48 (1) ◽  
pp. 40
Author(s):  
Elham Khataee ◽  
Farah Karimi ◽  
Khadijeh Razavi

To compare the effects of different carbon sources on physiological aspects, especially medicinal alkaloid biosynthesis and related gene expression in Catharantus roseus (L.) G.Don, we employed sucrose and sorbitol with two concentrations (87.64 mM, the equimolar concentration of sucrose in MS basal medium, and 150 mM) on the plant’s shoots in vitro in presence of 100 μM methyl jasmonate. The production of plant alkaloids including vincristine, vinblastine, ajmalicine, vindoline and catharantine and their biosynthetic and regulatory gene expression was measured. Both treatments had incremental effects on alkaloid production, upregulated the mitogen-activated protein kinase3 (MAPK3) and a downstream responsive transcription factor, ORCA3, which resulted in elevated transcript contents of the important genes in terpenoid indol alkaloids biosynthetic pathway including peroxidase1 (PRX1), geissoschizine synthase (GS), strictosidine synthase (STR) and deacetylvindoline acetyltransferase (DAT). Defensive responses such as antioxidant enzymes (catalase, peroxidase and superoxide dismutase) activities and non-enzymatic metabolites (total phenolics, flavonoids and carotenoids) contents increased under both treatments but the effects of sorbitol were stronger. Reduced fresh weight and chlorophylls contents, increased malondialdehyde (MDA) and carotenoid contents were shown after a week under all employed treatments. It seems that replacement of sucrose with sorbitol and also, increased concentrations of both carbon sources via increasing osmotic pressure make stressful conditions for the plant especially in longer times.

2013 ◽  
Vol 2 (1) ◽  
pp. 158 ◽  
Author(s):  
Dolar Pak ◽  
Arunachalam Muthaiyan ◽  
Robert S. Story ◽  
Corliss A. O'Bryan ◽  
Sun-Ok Lee ◽  
...  

<p>A fermentation study of three probiotic <em>Lactobacillus</em> strains was conducted on individual carbohydrates including glucose (GLU) high methoxy pectin (HMP), sugar beet pectin (SBP), fructooligosaccharide (FOS), galactooligosaccharide (GOS), and inulin agave (IA) as the sole carbon sources. It was observed that <em>Lactobacillus bulgaricus </em>(LB), <em>Lactobacillus casei</em> (LC) and <em>Lactobacillus delbruckii</em> (LD) achieved the highest growth rates when they were grown in the presence of GLU, FOS, and IA, but LB had a slower growth rate in these substrates compared to LC and LD. Only LC had a statistically significantly higher growth rate in GOS than in the basal medium which contained no carbohydrate source. Exposure to bile caused a significant reduction of log colony forming units/ml of all 3 strains, with LD grown in HMP exhibiting the highest survival followed by LC and LD grown in GLU, and LD grown on IA. Although HMP was not fermented by the test organisms, results indicate that HMP may in fact help certain probiotic bacteria to survive exposure to bile. Exposure to simulated gastric juices indicated that the studied <em>Lactobacilli</em> are tolerant to simulated gastric juice.</p>


2006 ◽  
Vol 188 (11) ◽  
pp. 4158-4162 ◽  
Author(s):  
Seiji Tsuge ◽  
Takeshi Nakayama ◽  
Shinsaku Terashima ◽  
Hirokazu Ochiai ◽  
Ayako Furutani ◽  
...  

ABSTRACT A novel regulatory gene, trh, which is involved in hrp gene expression, is identified in the plant pathogen Xanthomonas oryzae pv. oryzae. In the trh mutant, expression of HrpG, which is a key regulator for hrp gene expression, is reduced both under the in vitro hrp-inducing condition and in planta.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 693b-693
Author(s):  
Xiaoling Yu ◽  
Barbara M. Reed

Multiplication and elongation of shoot cultures established from mature trees of hazelnut cvs. Nonpareil and Tonda Gentile Romana were affected by changes in basal medium, carbon source and concentration, cytokinin and agar concentration. Explants on DKW medium produced significantly more shoots than those on Anderson medium or modified woody plant medium for chestnut. Explants on DKW medium with 3% glucose or fructose gave more and longer shoots than those with the other carbon sources. Cytokinins 6 benzylaminopurine (BA) and zeatin were more effective in producing shoots than kinetin and 2iP. On BA supplemented medium, the best multiplication rate was obtained with 1.5 - 2.0 mg/l. Explants grown on 0.4% agar produced more shoots than those on 0.6%, however, prolonged culture on 0.4% agar caused vitrification of lower parts of the plants. Shoot multiplication rates of these two cultivars were similar, but `Nonpareil' produced longer shoots than `Tonda Gentile Romana'.


2016 ◽  
Vol 74 (2) ◽  
Author(s):  
Oktaviany Ferry TRIASTANTO ◽  
Muhammad JUSUF ◽  
Djoko SANTOSO

Summary One of the major problems encountered in micropropagation of cacao through tissue culture is very low frequency of embryo formation. Embryogenesis is believed to have key regulatory gene determining the process. Understanding such gene may help to solve problems in the regeneration process. One of the genes reported to involve in the embryogenesis is AGAMOUS-like 15 (AGL-15). This gene has an important role in the regulation of early embryogenesis in several plants. This experiment aimed to identify AGL-15 homolog in cacao through bioinformatics approach. The first step of this experiment is to identify the AGL-15 homolog using hetero-logous primers from DNA genomic isolated from leaves of cacao plants. The sequence of the AGL-15 fragment was used in designing specific primers for longer AGL-15 fragment. These primers were then used to identify AGL-15 gene using total RNA isolated from cultured zygotic embryos. Differential pattern of AGL-15 gene expression was observed in zygotic embryos cultured for five weeks. AGL-15 heterologous primers designed from several plants could be used to identify cacao AGL-15 homolog. The putative cacao AGL-15 gene could be identified from zygotic embryos. The differential pattern of the AGL-15 gene expression is a strong indication that AGL-15 can be used as an embryogenesis marker in cacao plants.Ringkasan Salah satu kendala perbanyakan kakao melalui kultur jaringan adalah sulitnya embriogenesis, yang diduga melibatkan satu atau lebih gen kunci yang menentukan proses tersebut. Keberhasilan mengidentifikasi gen-gen kunci akan membantu menyelesaikan masalah dalam regenerasi embrio kakao. Salah satu gen yang diduga terlibat dalam proses ini adalah AGAMOUS-like 15 (AGL-15). Gen ini berperan pada regulasi selama masa awal perkembangan embrio beberapa tanaman. Penelitian ini bertujuan untuk mengidentifikasi homolog AGL-15 pada kakao melalui pen-dekatan bioinformatika dan RT-PCR. Pene-litian diawali dengan identifikasi homolog AGL-15 dari DNA genomik daun kakao meng-gunakan primer heterologus. Sekuen fragmen homolog AGL-15 yang diperoleh, kemudian digunakan untuk merancang primer spesifik AGL-15 yang berukuran lebih panjang. Primer ini selanjutnya digunakan untuk meng-identifikasi gen AGL-15 dari RNA total embrio zigotik. Pengamatan pola pita gen AGL-15 dilakukan pada kultur in vitro embrio zigotik yang berumur lima minggu. Primer hetero-logus gen AGL-15 yang berasal dari berbagai tanaman, mampu mengidentifikasi keberadaan homolog  gen  tersebut  pada  tanaman   kakao. Fragmen homolog AGL-15 putatif tanaman kakao teridentifikasi pada tingkat RNA embrio. Dengan adanya pola diferensial dari ekspresi gen AGL-15 hingga lima minggu pertama perkembangan embrio, ada indikasi kuat bahwa fragmen homolog AGL-15 dapat menjadi penanda embriogenesis pada tanaman kakao.


Author(s):  
Nurit Shalev ◽  
Michelle Kendall ◽  
Seegehalli M Anil ◽  
Ajjampura C Vinayaka ◽  
Hinanit Koltai

Ovarian cancer (OC) is the most lethal gynecologic malignancy. Cannabis sativa is being used to treat different medical conditions. We sought to examine the effectiveness of combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis and cell cycle were determined by fluorescence-activated cell sorting (FACS). Gene expression was determined by quantitative PCR. The two most active fractions, F5 and F7, from a high &Delta;9&ndash;tetrahydrocannabinol (THC) cannabis strain extract and their standard mix (SM) showed cytotoxic activity against OC cells. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). F5, F7 and SM affected cell cycle, led to cell apoptosis and to a marked reduction in cell migration. Moreover, these fractions act in synergy with niraparib, and were ~50 fold more cytotoxic to OC cells than to normal keratenocytes. Niraparib+F7 treatment was effective on OC patient's cells. F7 and the niraparin+fraction (F5 and F7) treatments reduced Mitogen-Activated Protein Kinase 4 (MAPK4) gene expression; this reduction may act in synergy with the niraparib inhibition of Poly (ADP-ribose) polymerase 1 (PARP1) activity. Combinations of cannabis compounds and niraparib should be examined for efficacy in pre-clinical studies and clinical trials.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 698c-698
Author(s):  
Veronique Declerck ◽  
Schuyler S. Korban

Leaf segments of Prunus persica L. (peach) collected from greenhouse-grown plants and from micropropagated shoots were cultured on a basal medium containing half-strength Murashige and Skoog (MS), Staba vitamins, sucrose (30 g/1) and agar (6.5 g/l); medium adjusted to pH 5.6. The influence of 6 different growth regulators at 3 concentrations (5, 10, 15 μM) were investigated using leaf explants from proliferating shoots of 'Elberta Queen' peach. With thidiazuron (TDZ), compact and multiple green calli were obtained; with benzyladenine and zeatin, lower numbers of small sized calli were obtained; with kinetin, no callus development was observed. Among auxin treatments, both Dicamba and 2,4-D resulted in friable white and yellow calli. Most of the calli produced in all treatments were formed along the cut margins of the explants. In an another experiment, leaf explants of' Bellaire' (greenhouse) and `Elberta Queen' (in vitro shoots) were used to determine the influence of a large scale concentration of TDZ (3 to 23 |iM). Explants from greenhouse and in vitro leaves resulted in higher levels of callus development at TDZ concentrations of 8-13 μM. Higher TDZ levels resulted in necrosis of leaf explants. The-influence of different carbon sources on callogenesis was investigated. We observed more green and compact calli with glucose than with sucrose and fructose at 100 mM. The influence of the glucose at 10 different concentrations (30 to 300 mM) was also investigated.


Apmis ◽  
2010 ◽  
Vol 119 (2) ◽  
pp. 135-142 ◽  
Author(s):  
PAULA KUROLA ◽  
TERHI TAPIAINEN ◽  
JENNY SEVANDER ◽  
TARJA KAIJALAINEN ◽  
MAIJA LEINONEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document