scholarly journals Δ9–Tetrahydrocannabinol (THC)-Rich Compositions from Cannabis Have Cytotoxic Activity Against Ovarian Cancer Cells and Act Synergistically With Niraparib in vitro

Author(s):  
Nurit Shalev ◽  
Michelle Kendall ◽  
Seegehalli M Anil ◽  
Ajjampura C Vinayaka ◽  
Hinanit Koltai

Ovarian cancer (OC) is the most lethal gynecologic malignancy. Cannabis sativa is being used to treat different medical conditions. We sought to examine the effectiveness of combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis and cell cycle were determined by fluorescence-activated cell sorting (FACS). Gene expression was determined by quantitative PCR. The two most active fractions, F5 and F7, from a high Δ9–tetrahydrocannabinol (THC) cannabis strain extract and their standard mix (SM) showed cytotoxic activity against OC cells. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). F5, F7 and SM affected cell cycle, led to cell apoptosis and to a marked reduction in cell migration. Moreover, these fractions act in synergy with niraparib, and were ~50 fold more cytotoxic to OC cells than to normal keratenocytes. Niraparib+F7 treatment was effective on OC patient's cells. F7 and the niraparin+fraction (F5 and F7) treatments reduced Mitogen-Activated Protein Kinase 4 (MAPK4) gene expression; this reduction may act in synergy with the niraparib inhibition of Poly (ADP-ribose) polymerase 1 (PARP1) activity. Combinations of cannabis compounds and niraparib should be examined for efficacy in pre-clinical studies and clinical trials.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 465
Author(s):  
Omer Anis ◽  
Ajjampura C. Vinayaka ◽  
Nurit Shalev ◽  
Dvora Namdar ◽  
Stalin Nadarajan ◽  
...  

Cannabis sativa contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer. An XTT assay was used to determine cytotoxic activity of C. sativa extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR). The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) C. sativa was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity. Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment.


2013 ◽  
Vol 25 (1) ◽  
pp. 244
Author(s):  
K.-A. Hwang ◽  
K.-C. Choi

One of estrogens in the body, 17β-oestradiol (E2), is a pleiotropic hormone that regulates the growth and differentiation of many tissues and also acts as a mitogen that promotes the development and proliferation of hormone-responsive cancers such as breast and ovarian carcinomas. Xenoestrogens are chemical compounds that imitate oestrogen in living organisms and are classified as a type of endocrine-disrupting chemical (EDC). Bisphenol A (BPA) is a widely used industrial compound, and also known as an EDC and especially a xenoestrogen. In this study, we examined the effect of E2 or BPA on the cell growth of BG-1 ovarian cancer cells in vivo and in vitro. In the cell proliferation assay in vitro, E2 or BPA increased the growth of the BG-1 ovarian cancer cells expressing oestrogen receptors (ER). Their proliferation activity was reversed by the treatment of ICI 182 780, a well-known antagonist of ER, which demonstrates that the cell proliferation by E2 or BPA is mediated by ER and BPA certainly acts as a xenoestrogen in the BG-1 ovarian cancer cells. Clearly, E2 and BPA increased the expression of cyclin D1, a factor responsible for the G1/S cell cycle transition. These reagents also decreased the expression of p21, a potent cyclin-dependent kinase (CDK) inhibitor that arrests the cell cycle in the G1 phase. As a result, they promoted the proliferation of BG-1 cells via upregulation of the cell cycle progression. In mice xenograft models transplanted with BG-1 ovarian cancer cells, E2 or BPA administration significantly induced the tumour proliferation compared with vehicle (corn oil) treatment for 10 weeks, which was identified by the measurement of tumour volume and histological analysis on tumour tissues such as hematoxylin and eosin (H&E) staining and BrdU incorporation assay. Taken together, as an EDC having a xenoestrogenic activity, BPA was demonstrated to have a risk of tumour proliferation in oestrogen-dependent cancers such as ovarian cancer. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of government of Korea (no. 2011-0015385).


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1638-1648 ◽  
Author(s):  
Lisa K. Mullany ◽  
Zhilin Liu ◽  
Erin R. King ◽  
Kwong-Kwok Wong ◽  
JoAnne S. Richards

Loss of Pten in the KrasG12D;Amhr2-Cre mutant mice leads to the transformation of ovarian surface epithelial (OSE) cells and rapid development of low-grade, invasive serous adenocarcinomas. Tumors occur with 100% penetrance and express elevated levels of wild-type tumor repressor protein 53 (TRP53). To test the functions of TRP53 in the Pten;Kras (Trp53+) mice, we disrupted the Trp53 gene yielding Pten;Kras(Trp53−) mice. By comparing morphology and gene expression profiles in the Trp53+ and Trp53− OSE cells from these mice, we document that wild-type TRP53 acts as a major promoter of OSE cell survival and differentiation: cells lacking Trp53 are transformed yet are less adherent, migratory, and invasive and exhibit a gene expression profile more like normal OSE cells. These results provide a new paradigm: wild-type TRP53 does not preferentially induce apoptotic or senescent related genes in the Pten;Kras(Trp53+) cancer cells but rather increases genes regulating DNA repair, cell cycle progression, and proliferation and decreases putative tumor suppressor genes. However, if TRP53 activity is forced higher by exposure to nutlin-3a (a mouse double minute-2 antagonist), TRP53 suppresses DNA repair genes and induces the expression of genes that control cell cycle arrest and apoptosis. Thus, in the Pten;Kras(Trp53+) mutant mouse OSE cells and likely in human TP53+ low-grade ovarian cancer cells, wild-type TRP53 controls global molecular changes that are dependent on its activation status. These results suggest that activation of TP53 may provide a promising new therapy for managing low-grade ovarian cancer and other cancers in humans in which wild-type TP53 is expressed.


2011 ◽  
Vol 435 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Anne Roobol ◽  
Jo Roobol ◽  
Martin J. Carden ◽  
Amandine Bastide ◽  
Anne E. Willis ◽  
...  

In vitro cultured mammalian cells respond to mild hypothermia (27–33 °C) by attenuating cellular processes and slowing and arresting the cell cycle. The slowing of the cell cycle at the upper range (31–33 °C) and its complete arrest at the lower range (27–28 °C) of mild hypothermia is effected by the activation of p53 and subsequent expression of p21. However, the mechanism by which cold is perceived in mammalian cells with the subsequent activation of p53 has remained undetermined. In the present paper, we report that the exposure of Chinese-hamster ovary-K1 cells to mildly hypothermic conditions activates the ATR (ataxia telangiectasia mutated- and Rad3-related kinase)–p53–p21 signalling pathway and is thus a key pathway involved in p53 activation upon mild hypothermia. In addition, we show that although p38MAPK (p38 mitogen-activated protein kinase) is also involved in activation of p53 upon mild hypothermia, this is probably the result of activation of p38MAPK by ATR. Furthermore, we show that cold-induced changes in cell membrane lipid composition are correlated with the activation of the ATR–p53–p21 pathway. Therefore we provide the first mechanistic detail of cell sensing and signalling upon mild hypothermia in mammalian cells leading to p53 and p21 activation, which is known to lead to cell cycle arrest.


2012 ◽  
Vol 442 (2) ◽  
pp. 293-302 ◽  
Author(s):  
Ming-Cheng Chang ◽  
Chi-An Chen ◽  
Pao-Jen Chen ◽  
Ying-Cheng Chiang ◽  
Yu-Li Chen ◽  
...  

Ovarian cancer has one of the highest mortalities in malignancies in women, but little is known of its tumour progression properties and there is still no effective molecule that can monitor its growth or therapeutic responses. MSLN (mesothelin), a secreted protein that is overexpressed in ovarian cancer tissues with a poor clinical outcome, has been previously identified to activate PI3K (phosphoinositide 3-kinase)/Akt signalling and inhibit paclitaxel-induced apoptosis. The present study investigates the correlation between MSLN and MMP (matrix metalloproteinase)-7 in the progression of ovarian cancer, and the mechanism of MSLN in enhancing ovarian cancer invasion. The expression of MSLN correlated well with MMP-7 expression in human ovarian cancer tissues. Overexpressing MSLN or ovarian cancer cells treated with MSLN showed enhanced migration and invasion of cancer cells through the induction of MMP-7. MSLN regulated the expression of MMP-7 through the ERK (extracellular-signal-regulated kinase) 1/2, Akt and JNK (c-Jun N-terminal kinase) pathways. The expression of MMP-7 and the migrating ability of MSLN-treated ovarian cancer cells were suppressed by ERK1/2- or JNK-specific inhibitors, or a decoy AP-1 (activator protein 1) oligonucleotide in in vitro experiments, whereas in vivo animal experiments also demonstrated that mice treated with MAPK (mitogen-activated protein kinase)/ERK- or JNK-specific inhibitors could decrease intratumour MMP-7 expression, delay tumour growth and extend the survival of the mice. In conclusion, MSLN enhances ovarian cancer invasion by MMP-7 expression through the MAPK/ERK and JNK signal transduction pathways. Blocking the MSLN-related pathway could be a potential strategy for inhibiting the growth of ovarian cancer.


2001 ◽  
Vol 21 (19) ◽  
pp. 6515-6528 ◽  
Author(s):  
Kristin Baetz ◽  
Jason Moffat ◽  
Jennifer Haynes ◽  
Michael Chang ◽  
Brenda Andrews

ABSTRACT In Saccharomyces cerevisiae, the heterodimeric transcription factor SBF (for SCB binding factor) is composed of Swi4 and Swi6 and activates gene expression at the G1/S-phase transition of the mitotic cell cycle. Cell cycle commitment is associated not only with major alterations in gene expression but also with highly polarized cell growth; the mitogen-activated protein kinase (MAPK) Slt2 is required to maintain cell wall integrity during periods of polarized growth and cell wall stress. We describe experiments aimed at defining the regulatory pathway involving the cell cycle transcription factor SBF and Slt2-MAPK. Gene expression assays and chromatin immunoprecipitation experiments revealed Slt2-dependent recruitment of SBF to the promoters of the G1 cyclinsPCL1 and PCL2 after activation of the Slt2-MAPK pathway. We performed DNA microarray analysis and identified other genes whose expression was reduced in both SLT2and SWI4 deletion strains. Genes that are sensitive to both Slt2 and Swi4 appear to be uniquely regulated and reveal a role for Swi4, the DNA-binding component of SBF, which is independent of the regulatory subunit Swi6. Some of the Swi4- and Slt2-dependent genes do not require Swi6 for either their expression or for Swi4 localization to their promoters. Consistent with these results, we found a direct interaction between Swi4 and Slt2. Our results establish a new Slt2-dependent mode of Swi4 regulation and suggest roles for Swi4 beyond its prominent role in controlling cell cycle transcription.


2021 ◽  
Vol 22 (21) ◽  
pp. 11502
Author(s):  
Maria T. Löblein ◽  
Isabel Falke ◽  
Hans Theodor Eich ◽  
Burkhard Greve ◽  
Martin Götte ◽  
...  

In ovarian cancer, therapy resistance mechanisms complicate cancer cell eradication. Targeting Musashi RNA-binding proteins (MSI) may increase therapeutic efficacy. Database analyses were performed to identify gene expression associations between MSI proteins and key therapy resistance and cancer stem cell (CSC) genes. Then, ovarian cancer cells were subjected to siRNA-based dual knockdown of MSI-1 and MSI-2. CSC and cell cycle gene expression was investigated using quantitative polymerase chain reaction (qPCR), western blots, and flow cytometry. Metabolic activity and chemoresistance were assessed by MTT assay. Clonogenic assays were used to quantify cell survival post-irradiation. Database analyses demonstrated positive associations between MSI proteins and putative CSC markers NOTCH, MYC, and ALDH4A1 and negative associations with NOTCH inhibitor NUMB. MSI-2 expression was negatively associated with the apoptosis regulator p21. MSI-1 and MSI-2 were positively correlated, informing subsequent dual knockdown experiments. After MSI silencing, CSC genes were downregulated, while cell cycle progression was reduced. Metabolic activity was decreased in some cancer cells. Both chemo- and radioresistance were reduced after dual knockdown, suggesting therapeutic potential. Dual knockdown of MSI proteins is a promising venue to impede tumor growth and sensitize ovarian cancer cells to irradiation and chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document