Phylogenetic relationships within the genus Atopobathynella Schminke (Bathynellacea:Parabathynellidae)

2006 ◽  
Vol 20 (1) ◽  
pp. 9 ◽  
Author(s):  
Joo-Lae Cho ◽  
W. F. Humphreys ◽  
Sang-Don Lee

The present study attempts to reconstruct the phylogenetic relationships among species of Atopobathynella Schminke, 1973 in order to elucidate their distributional patterns and to seek a mechanism for the worldwide colonisation of the limnic interstitial by the Parabathynellidae. We describe six new Atopobathynella recently discovered in Western Australia: A. gascoyneensis, sp. nov., A. hinzeae, sp. nov., A. schminkei, sp. nov., A. wattsi, sp. nov., A. readi, sp. nov. and A. glenayleensis, sp. nov. The phylogenetic relationships among these species and four previously known species in the genus are assessed using 28 morphological characters. The analysis yielded two most parsimonious trees 71 steps long with consistency index 0.5070, retention index 0.5270, and rescaled consistency index 0.2672. One of these trees supports the grouping of A. readi, sp. nov. + (((A. wattsi, sp. nov. + A. glenaylensis, sp. nov.) + (A. hospitalis Schminke, 1973 (A. gascoyneensis, sp. nov. (A. schminkei, sp. nov. + A. hinzeae, sp. nov.)))) + (A. valdiviana (Noodt, 1964) (A. compagana Schminke, 1973 + A. chelifera Schminke, 1973))). We discuss the monophyly of Atopobathynella and its phylogenetic position within the family Parabathynellidae. The results of the phylogenetic analysis and the biogeographical data suggest that the ancestors of Atopobathynella colonized groundwater via limnic surface water.

2005 ◽  
Vol 26 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Francisca do Val ◽  
Paulo Nuin

AbstractThe systematics and phylogenetic relationships of the family Leptodactylidae are controversial as is the intrafamilial phylogeny of the leptodactylids. Here we analyze the relationships of the leptodactylid subfamily Hylodinae. This subfamily has been considered to be monophyletic and composed of three genera, Hylodes, Crossodactylus and Megaelosia. In the present study 49 characters were used, based on different studies on Leptodactylidae phylogeny. Maximum parsimony methods with unweighted and successively weighted characters were used to estimate the phylogeny of the Hylodinae. Upon analysis, the data provided further evidence of the monophyletic status of the three genera, with Megaelosia being the basal genus and the other two genera being sister taxa. The analysis with successive weighting results in a more resolved topology of the species subgroups of the genus Hylodes and separates this genus from Crossodactylus and confirms that the hylodines are monophyletic.


1990 ◽  
Vol 38 (5) ◽  
pp. 519 ◽  
Author(s):  
PR Baverstock ◽  
M Krieg ◽  
J Birrell ◽  
GM Mckay

Microcomplement fixation of albumin was used to examine the phylogenetic relationships among the ringtail possums, family Pseudocheiridae. Phylogenetic analysis of the data supports the hypothesis of at least three distinct clades within the family: one containing Petauroides and Hemibelideus; a second consisting of Pseudocheirus herbertensis, Ps. forbesi, Ps. mayeri, and Ps. canescens; and a third containing Ps. archeri, Ps. corinnae, Ps. cupreus and Ps. dahli. The data have not resolved the phylogenetic position of Ps. peregrinus, which may either form a separate clade or lie close to the Ps. archeri clade.


2011 ◽  
Vol 279 (1731) ◽  
pp. 1093-1099 ◽  
Author(s):  
Maria Heikkilä ◽  
Lauri Kaila ◽  
Marko Mutanen ◽  
Carlos Peña ◽  
Niklas Wahlberg

Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous–Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis , a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.


Author(s):  
Christopher J. Glasby ◽  
Patricia A. Hutchings ◽  
Kathryn Hall

A phylogenetic analysis of the polychaete clade Terebelliformia (Terebellida) was undertaken in order to test monophyly of families and subfamilies and to determine their affinities. Parsimony analyses of 41 terebelliform species with outgroup Owenia fusiformis and 46 morphological characters yielded 106–144 most parsimonious trees with length 250, consistency index=0·432, retention index=0·659 and rescaled consistency index=0·285. Monophyly was indicated for Alvinellidae, Ampharetidae, Terebellidae and Trichobranchidae and the terebellid subfamily Polycirrinae. Monophyly of Terebellidae is supported by the presence of a ridge-like tentacular membrane. Monophyly of Polycirrinae is supported by the loss of branchiae, trilobed upper lip, pinnate secondary notochaetae and ventro-lateral pads. Recognition of Polycirrinae renders taxa in the other terebellid subfamilies—Terebellinae and Thelepodinae—paraphyletic. Our results do not support previous classifications that placed Trichobranchidae as a subfamily of Terebellidae; rather it should be considered equal in rank with Alvinellidae, Ampharetidae, Terebellidae and Pectinariidae. The following relationships were obtained: (Trichobranchidae ((Alvinellidae, Ampharetidae) (Pectinariidae, Terebellidae))). This is the first time a Pectinariidae–Terebellidae sister group relationship has been found; it is supported by the synapomorphic presence of ventral glandular shields.


2020 ◽  
Vol 96 (2) ◽  
pp. 455-498
Author(s):  
Kai Horst George

Uncovering the systematics of CopepodaHarpacticoida, the second-most abundant component of the meiobenthos after Nematoda, is of major importance for any further research dedicated especially to ecological and biogeographical approaches. Based on the evolution of the podogennontan first swimming leg, a new phylogenetic concept of the Ancorabolidae Sars and Cletodidae T. Scott sensu Por (Copepoda, Harpacticoida) is presented, using morphological characteristics. It confirms the polyphyletic status of the Ancorabolidae and its subfamily Ancorabolinae Sars and the paraphyletic status of the subfamily Laophontodinae Lang. Moreover, it clarifies the phylogenetic relationships of the so far assigned members of the family. An exhaustive phylogenetic analysis was undertaken using 150 morphological characters, resulting in the establishment of a now well-justified monophylum Ancorabolidae. In that context, the Ancorabolus-lineage sensu Conroy-Dalton and Huys is elevated to sub-family rank. Furthermore, the membership of Ancorabolina George in a rearranged monophylum Laophontodinae is confirmed. Conversely, the Ceratonotus-group sensu Conroy-Dalton is transferred from the hitherto Ancorabolinae to the Cletodidae. Within these, the Ceratonotus-group and its hypothesised sister-group Cletodes Brady are combined to form a monophyletic subfamily Cletodinae T. Scott, subfam. nov. Consequently, it was necessary to restructure the Ancorabolidae, Ancorabolinae and Laophontodinae and extend the Cletodidae to include the displacement and exclusion of certain taxa. Moreover, comparison of the Ancorabolidae, Cletodidae, Laophontoidea and other Podogennonta shows that the Ancorabolidae and Cletodidae form sister-groups in a monophylum Cletodoidea Bowman and Abele, which similarly has a sister-group-relationship with the Laophontoidea T. Scott. According to the present study, both taxa constitute a derived monophylum within the Podogennonta Lang.


2020 ◽  
Vol 51 (3) ◽  
pp. 296-346
Author(s):  
Magno S. Ramos ◽  
Celso O. Azevedo

Bethylinae are a morphologically well-defined subfamily of Bethylidae, with remarkable characters, such as strongly convex clypeal carina and bifid and angled tarsal claws. However, there is no consensus about the phylogenetic relationships among the genera within the family, regarding mainly Eupsenella and Lytopsenella. To resolve this problem, a phylogeny of the Bethylinae is inferred based on parsimony analyses separately of 43 and 44 morphological characters for males and females, respectively. We performed combined analyses of both sexes with 49 morphological characters, including genitalia. We present a phylogenetic analysis, including a total 118 species of Bethylinae. Male and female characters were included in these analyses. We discuss wing morphology and deformability of forewings for the first time. In summary, the basal polytomy was solved for the first time. Seven of the eight genera were recovered as monophyletic groups. The unique exception is Goniozus, which was retrieved as paraphyletic in all topologies.


1997 ◽  
Vol 75 (6) ◽  
pp. 963-970 ◽  
Author(s):  
André-Denis G. Wright ◽  
Denis H. Lynn

Phylogenetic relationships within the largest family of entodiniomorphid rumen ciliates, the Ophryoscolecidae, were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included three new sequences from Diplodinium dentatum (1638 base pairs (bp)), Eudiplodinium maggii (1637 bp), and Ophryoscolex purkynjei (1636 bp). Using morphological characters, Lubinsky constructed a cladogram of the Ophryoscolecidae, and on the basis of his analysis, he divided the family into three subfamilies (Entodiniinae, Diplodiniinae, Ophryoscolecinae) to reflect his "natural" groupings (G. Lubinsky. 1957. Can. J. Zool. 35: 141 – 159). Our cladistic analysis, based on the limited morphological and ultrastructural data available, indicates that there are no synapomorphies supporting the Diplodiniinae sensu Lubinsky. However, based upon the six 18S sequences for the Ophryoscolecidae, the rumen ciliates are monophyletic and fall into three distinct groups corresponding to Lubinsky's subfamilial division of the family. Our molecular analysis shows Entodinium to be the earliest branching rumen ciliate (subfamily Entodiniinae) and Eudiplodinium, not Diplodiium, branching first among the diplodiniines.


2016 ◽  
Vol 30 (6) ◽  
pp. 523 ◽  
Author(s):  
M. Avian ◽  
A. Ramšak ◽  
V. Tirelli ◽  
I. D'Ambra ◽  
A. Malej

This study provides new and additional data on morphology and a phylogenetic analysis of the recently described species Pelagia benovici Piraino, Aglieri, Scorrano & Boero, 2014 from the Northern Adriatic (Mediterranean Sea). Comprehensive morphological analyses of diagnostic characters, of which the most significant are marginal tentacles anatomy, basal pillars, gonad pattern, subgenital ostia and exumbrellar sensory pits, revealed significant differences from the currently known genera Sanderia, Chrysaora and Pelagia in the family Pelagiidae. A phylogenetic analysis of mitochondrial genes (COI, 16S rRNA, 12S rRNA) and nuclear ribosomal genes (28S rRNA, ITS1/ITS2 regions), together with cladistic analysis of morphological characters, positioned Pelagia benovici as a sister taxon with Sanderia malayensis, and both share a common ancestor with Chrysaora hysoscella. Pelagia benovici does not share a direct common ancestor with the genus Pelagia, and thus we propose it should not belong to this genus. Therefore, a new genus Mawia, gen. nov. (Semaeostomeae : Pelagiidae) is described, and Pelagia benovici is renamed as Mawia benovici, comb, nov.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 734
Author(s):  
Agnieszka Nowińska ◽  
Ping-ping Chen ◽  
Jolanta Brożek

The goal of this study was to analyze the types and distributional patterns of sensilla in Corixoidea, which is part of the approach to the phylogeny study of Nepomorpha, based on the morphological characters of sensilla. This paper presents the results of the study, with the use of a scanning electron microscope (SEM), on the antennae of species from the families Corixidae and Micronectidae. The antennal sensilla of eleven species from Corixidae and two species from Micronectidae were studied. Five main types of sensilla with several subtypes of sensilla trichodea were found and described. The study has shown that the family Corixidae has a strong uniformity when it comes to antennal sensilla (similar patterns of sensilla trichodea and basiconica), and a similarity to the types and distributions of sensilla in two species of the family Micronectidae. However, significant differences between the families were also discovered (differences in sensilla presence on the first and second antennomeres, lack of sensilla coeloconica on the third antennomere in Micronectidae), which leads to a supportive conclusion of the systematic position of Micronectidae as a family.


Sign in / Sign up

Export Citation Format

Share Document