Geochemical influences on metal partitioning in contaminated estuarine sediments

2002 ◽  
Vol 53 (1) ◽  
pp. 9 ◽  
Author(s):  
Stuart L. Simpson ◽  
Louisa Rochford ◽  
Gavin F. Birch

Stormwater runoff has resulted in heavy metal contamination throughout much of the Port Jackson estuary, Sydney, Australia. Metal partitioning was investigated in the benthic estuarine sediments of Iron Cove, an off-channel embayment of Port Jackson. Contamination was greatest near the stormwater canal, where sediments were anoxic and contained high concentrations of sulfide in the porewater. Away from the canal a layer of non-cohesive, sub-oxic surficial sediment containing high dissolved iron was found overlaying a more cohesive substratum. At all sites, porewater Cd, Cu, Ni, Pb and Zn were <2.5 g L–1, and negligible metal release was observed upon sediment resuspension. According to water quality guidelines, the ecological risk posed by dissolved metals from the Iron Cove sediments is low. Estimated fluxes of Cd, Cu, Ni, Pb and Zn from the sediments were calculated to be <0.2 mol m–2 day–1. The rapid oxidation then hydrolysis of iron(II) in porewaters caused a drop in pH and the formation of iron hydroxide precipitate. These processes may affect dissolved metal concentrations; hence, oxidation of samples must be avoided during sampling and extraction procedures. Sediment-bound zinc was the metal most easily mobilized.

2021 ◽  
Vol 47 (1) ◽  
pp. 1-18
Author(s):  
Keolebogile R. Sebogodi ◽  
Jonas K. Johakimu ◽  
B. Bruce Sithole

Acid mine drainage (AMD) is one of the repercussions that result from earth-moving activities around the sulfide-bearing mineral hosts. The detrimental effects associated with this AMD are driven by its characteristics, which include low pH and high concentrations of sulfate and toxic dissolved metals. Traditionally, the prevention and treatment of AMD are achieved by using technologies that use, amongst other, naturally occurring soils and carbonates. However, the continual use of these materials may eventually lead to their depletion. On the other hand, industrial by-products have been proven to occupying land that could have otherwise been used for profitable businesses. Additionally, the handling and maintenance of landfills are costly. In this current trend of a circular economy that is driven by industrial symbiosis, scientists are concerned with valorizing industrial by-products. One such by-product is the green liquor dregs (GLD) from Kraft mills. The neutralizing and geotechnical properties of these wastes have prompted the research pioneers to seek their potential use in handling the challenges associated with AMD. In this review, the formation AMD, trends in technologies for treatment and prevention of AMD are critically analyzed. This includes the feasibility of using GLD as an alternative, promising sustainable material.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
M. Adama ◽  
R. Esena ◽  
B. Fosu-Mensah ◽  
D. Yirenya-Tawiah

Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.


1983 ◽  
Vol 34 (3) ◽  
pp. 375 ◽  
Author(s):  
J Ferguson

High concentrations of particulate and dissolved lead, zinc and cadmium (total dissolved Pb, 750�g l-1; Zn, 4300�g 1-1; Cd, 64 �g l-1; particulate Pb, 236 �g l-1; Zn, 64 �g l-1; Cd, < 1 �g l-1) occur in seawater- like effluent from a lead-zinc smelting complex at Port Pirie. This effluent is discharged through a silled tidal channel into the offshore marine environment, where dilution by seawater eventually reduces the metal concentrations to values similar to those in near-surface seawater in Spencer Gulf, remote from centres of industrial activity (average total dissolved Pb, 0 4 �g 1-1; Zn, < 10 μg l-1; Cd, 0 3 �g l-1; average particulate Pb, <0.05 �g l-1; Zn, 0 21 �g I-1). Precipitation of dissolved metals or conversion of originally weakly complexed dissolved metals to more strongly complexed species does not occur to a significant extent. Particulate metal concentrations are influenced by resuspension of metal-rich sediments and by uptake of dissolved cadmium by unicellular algae that grow in the tidal channel.


1991 ◽  
Vol 42 (3) ◽  
pp. 287 ◽  
Author(s):  
GE Batley ◽  
JW Hayes

Polyorganosiloxanes, or silicones, common ingredients in a range of modern domestic and industrial formulations, have been detected in waters, surface microlayer samples, sewage discharges and estuarine sediments collected from the coastal zone near Sydney, New South Wales. High concentrations in sewage sludge (>100�g Si g-1) are not reflected in waters receiving a sewage discharge. However, the high affinity of hydrophobic silicones for large-surface-area clayey sediments leads to wide variability within a single waterbody, indicative of localized inputs. Furthermore, the fine structure of organosilicon sediment-depth profiles affords an excellent chemical indicator of a 1950 horizon, the approximate date of introduction of these compounds to Australia.


2007 ◽  
Vol 56 (9) ◽  
pp. 21-28 ◽  
Author(s):  
M.I. Magyar ◽  
V.G. Mitchell ◽  
A.R. Ladson ◽  
C. Diaper

Rainwater tanks are being introduced into urban areas in Australia to supplement centralised potable supply systems. A pilot scale tank study and a full-scale field tank study found that heavy metal concentrations in water samples taken from the tank's supply point can, in some cases, exceed levels recommended by guidelines. Both studies also found very high concentrations of heavy metals in the sediments accumulated at the base of rainwater tanks. Laboratory experiments are underway to investigate sediment transport processes within a full-scale tank. Preliminary results demonstrate the effect of sediment resuspension on the quality of water released from the tank outlet. Improved tank designs that reduce sediment resuspension and mitigate impacts on water quality are the focus of future work.


2009 ◽  
Vol 620-622 ◽  
pp. 125-128 ◽  
Author(s):  
Sung Won Kang ◽  
Seog Ku Kim ◽  
Sang Leen Yun ◽  
Hye Cheol Oh ◽  
Jae Hwan Ahn

This research was conducted to investigate the application of the novel upflow-type filtration device using hydrophobia media made of expanded polypropylene (EPP) from driveways site. The higher level of motorway-derived heavy metal contamination exists in stormwater runoff from a road section and the heavy metal levels were higher than the regulated Korean environmental guideline in lake and river. For Cd, Cr, Cu, Pb and Zn, the influent event mean concentrations (EMCs) during 8 storm periods were 2.75, 37.3, 90.5, 118.5 and 546.5 µg/L, respectively. The novel upflow-type filtration device with main mechanism of filtration and adsorption showed removal (>91%, >93%, >85%, >91% and >80%) of the studied heavy metals (Cd, Cr, Cu, Pb and Zn) and differences of medians of removal efficiencies among heavy metals were not statistically signficant by Kruskal-Wallis test (p>0.05) during 8 storm events. It is found that EPP media is very effective at the removal of the heavy metals, and the magnitude of heavy metal removal in a decreasing order is Cr, Cd, Pb, Cu and Zn.


Author(s):  
Dr. Salem M. ELNakeib ◽  
Dr. Fathi K. Elyaagubi ◽  
Dr. Mohamed A. Alrabib ◽  
Eng. Afaf Abouzed ◽  
Eng. Hanan Saleh Wanis

Soil samples were collected from and around Almarqub cement factory, AL-Khums city, Libya. These samples were collected from four different sites M1 (inside the factory), M2 (150 m from the factory), M3 (350 m from the factory) and M4 (60 km away from the factory as the control samples. The study was conducted to determine the heavy metal concentration in the soil. Organic matter, pH and water content value were determined according to the method described by Chaturvedi and Sankar (2006). Metals were determined by Atomic Absorption Spectrophotometer. The results obtained for the examined physiochemical properties of soil in the area studied prove that cement dust from the Almarqub cement factory has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These properties were found to be higher than those in similar soils from the same area unpolluted. The increase of soil pH in the same area may be a result of precipitation of cement dust over the years. Metal uptake from cement to soil and plants. Metals determined in contamination soil indicated high concentrations in M1 inside cement factory compared to soil samples as control. Results of the analysis have shown that there are signs of slight impact of soil properties arising from the cement dust on the soils, especially at location inside the factory. Recommendations were offered to monitor the dust falling on the soils through trapping and utilizing the dust emissions of cement.


2020 ◽  
Author(s):  
Markku Yli-Halla ◽  
Jarkko Kekkonen ◽  
Timo Lötjönen ◽  
Hannu Marttila

&lt;p&gt;Clogging of subsurface pipe drainage systems by rust precipitates is a problem in many cultivated areas and especially on the coast of Ostrobothnia, northwestern Finland. The subsurface drainage pipes need to be flushed every few years to remove the rust, which causes additional maintenance costs. These problems are particularly common in acid sulphate (AS) soils that have peat horizons on top of sulfidic materials. These soils are often wet, and the drainage water contains high dissolved iron concentration, commonly above 20 mg l&lt;sup&gt;-1&lt;/sup&gt;. Reducing conditions prevail in certain horizons and oxidation of sulfidic minerals and low pH are typical of the horizons above, all resulting in mobilization of several elements. Upon entering the aerobic drainage pipe dissolved iron is oxidized and readily precipitates as rust. In dry summers, the precipitate is typically hardened and the whole pipe drainage system can be blocked. Minerals containing sulphur (S) may also be precipitated in the pipes. The fresh precipitates can adsorb heavy metals that occur in substantial concentrations in AS drainage waters. In this study, 10 rust samples were collected from ditches and wells. All sites, except one, had a 20-70 cm peaty topsoil. A comprehensive chemical analysis was carried out and the precipitates were investigated with a scanning electron microscope (SEM). Colours of the samples were strong brown or reddish yellow (Munsell notation 7.5YR 5/6-6/8). Silicon content was only 0.3-0.9%, indicating the absence of actual soil material in the precipitates. The material contained 27-49% organic matter (1.9 x C), co-precipitated from the humic substances of drainage water. Iron was by far the most abundant element. If all Fe is contained in ferrihydrite (66% Fe), this mineral constituted 35-63% (mean 46%) of the precipitate while aluminium hydroxide (34% Al) constituted 0.7-9% (mean 5%). Even though most drainage waters were rich in S (commonly above 40 mg l&lt;sup&gt;-1&lt;/sup&gt;, the maximum S concentration of the precipitates was only 1.9% and the mean at 0.7%. Sulphur-containing minerals jarosite and schwertmannite were not detected in the SEM images, either, suggesting that these minerals are not precipitated from AS drainage waters. Dissolved heavy metals are leached from AS soils but they were not markedly co-precipitated in our samples. The mean concentration of Cd was only 1 mg kg&lt;sup&gt;-1&lt;/sup&gt; and Ni 12 mg kg&lt;sup&gt;-1&lt;/sup&gt;, Cr 33 mg kg&lt;sup&gt;-1&lt;/sup&gt;, Cu and Zn 32 mg kg&lt;sup&gt;-1&lt;/sup&gt; while Mn was more abundant, 355 mg kg&lt;sup&gt;-1&lt;/sup&gt;. In our peaty AS soils there is thus substantial mobilization of Fe and a flux out of the soil and a new solid phase is formed in the drainage pipes and ditches constituting mostly of iron hydroxide and humic substances. If dredged, application of this material onto the fields seems not to pose major environmental hazards.&lt;/p&gt;


2021 ◽  
Vol 873 (1) ◽  
pp. 012076
Author(s):  
R Nathasa ◽  
S Bijaksana ◽  
S J Fajar ◽  
T G Pitaloka

Abstract Cirebon is a densely populated port city which has ironsand deposits at its coastal area. Due to its vicinity to the port and the estuary, these deposits might contain anthropogenic pollutants including, heavy metals. Magnetic measurements, X-Ray diffraction (XRD) as well as X-Ray fluorescence (XRF) analyses were carried out on iron sand samples from three sites along the Cirebon coastal area to identify the anthropogenic pollutants. The samples were separated based on the grain size before the measurement and analyses. Preliminary results show that the ironsand is less magnetic and has smaller frequency-dependent magnetic susceptibility values than ironsand found on Bayuran Beach in Central Java. Combined XRD result and the regional geological map shows that most of the minerals were originated from eroded volcanic rocks. The XRF results show that the samples have a relatively high content of Si. XRF analyses also show relatively high concentrations of Cr and Zn, the Geoaccumulation Index shows that the sediment is moderately to heavily polluted by Cr and Zn indicating the possibility of anthropogenic origin. The Cr and Zn content exceeds the stipulated value in the Sediment Quality Guidelines (SQGS).


Sign in / Sign up

Export Citation Format

Share Document