rainwater tanks
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 920 (1) ◽  
pp. 012035
Author(s):  
N M Daud ◽  
N N Mahiran ◽  
A K Ruslan ◽  
N Hamzah ◽  
A A A Bakar ◽  
...  

Abstract Global warming and increasing population have direct impacts on water demand all over the world. Usage of potable water in Malaysia is high if compared with other countries and the source of potable water is mainly surface water. Rainwater harvesting is one of the popular alternatives to water resources around the world. However, even Malaysia is a country with an abundance of rainfall, rainwater harvesting is still unpopular. Different size of houses has different roof sizes which will subsequently require different sizes of rainwater tanks. This study utilized Tangki NAHRIM 2.0 (TN2); a web application to determine the optimal tank size for a rainwater harvesting system for five different roof sizes for non-potable demand. TN2 simulation uses a daily water balance model with rainfall input from a built-in database by adopting the yield-after-spillage (YAS) convention. The optimum rainwater tank sizes for five different roof sizes are found to be between 2.6 m3 and 3.8 m3 with water-saving efficiency values between 59% to 76.2% and 30.9% to 53.9% for storage efficiency. A bigger tank size offers higher watersaving efficiency but with lower storage efficiency. The output will be useful for the application of RWHS to residential houses.


2021 ◽  
Author(s):  
Gordana Rašić ◽  
Igor Filipović ◽  
Sean L Wu ◽  
Tomás M León ◽  
Jared B Bennett ◽  
...  

AbstractA rare example of a successful long-term elimination of the mosquito Aedes aegypti is in Brisbane, Queensland, where the legislatively-enforced removal of rainwater tanks drove its disappearance by the mid-1950s. However, a decade-long drought led to the mass installation of rainwater tanks throughout the region, re-introducing critical breeding sites for the mosquito’s persistence in this subtropical region. With Ae. aegypti re-invading towns just 150 km north of Brisbane, we examined the potential for their sustained elimination. Through genomic analyses, we estimated historical expansion and current isolation between neighboring populations as close as 15 kilometers. The estimated recent migration rate, entomological and meteorological data were used to calibrate the simulations of elimination campaigns in the two southernmost populations. Our simulations indicate that Ae. aegypti could be eliminated with moderate release numbers of incompatible Wolbachia-infected (IIT) males (sorted with an error rate ≤10-6) if non-compliant rainwater tanks are removed first. With this combined campaign, highly effective suppression (>99%) was predicted in both towns, and complete elimination was predicted in 35% of simulations in one town. Without tank removal, however, IIT led to a moderate suppression (61-93%) even with a 40:1 ratio of released IIT males to local males. Moreover, with a ratio of >20:1, Wolbachia establishment was predicted when the sorting error was >10-7. Our conservative estimates of intervention outcomes inform the planning of Ae. aegypti elimination in the region, and offer insight into the effective combinations of conventional and novel control tools, particularly for vulnerable mosquito populations at range margins.SignificanceAfter decades of range stagnation in Australia, the Aedes aegypti mosquito is expanding southward, approaching the most-densely-populated areas of Queensland. Using population genomics and simulation modeling of elimination campaigns, we show that Australia’s southernmost populations of this disease vector are genetically isolated and could be eliminated with moderate releases of incompatible Wolbachia-infected males if major larval breeding sites (non-compliant rainwater tanks) are removed first. The risk of Wolbachia establishment for this approach is low, and so is the risk of quick mosquito re-invasion. Our conservative estimates of intervention outcomes inform the planning of Ae. aegypti elimination in the region, and offer new insight into the benefits of combining conventional and novel control tools, particularly for mosquito populations at range margins.


2021 ◽  
Author(s):  
Darren G. Bos

Abstract This study explored the relationship private landowners have with their domestic rainwater tank and how that relationship influences the reliability of privately operated rainwater tanks for long-term performance and delivery of service. It found that tank owners generally placed a high value on their tank, desired to have them fully operational and made a reasonable effort to keep them functioning. However, the frequency and extent of maintenance action and effort was variable, and in the context of a private residence, rainwater tanks were typically afforded a low relative priority for repair when compared with other residential assets. This low relative priority could be a primary driver for the reported delay between when a fault occurs with the tank and when it is repaired. This ‘repair lag’ means that a portion of domestic rainwater tanks are likely to be non-operational at any one time. When planning a decentralised system for the management of stormwater, redundancies should be included to cover these gaps in service delivery. It is also recommended that programmes that support private landowners to maintain their rainwater tanks are implemented to minimise repair lag.


2021 ◽  
Vol 13 (8) ◽  
pp. 4266
Author(s):  
Monzur A. Imteaz ◽  
Maryam Bayatvarkeshi ◽  
Md. Rezaul Karim

Many end-users for the stormwater harvesting systems are reluctant in implementing the system due to uncertainties of the potential returns for their investment for such system. A common practice of presenting potential benefit of a certain investment is through calculation of payback period using net annual benefit from the system. Traditional practice of doing such payback period analysis for rainwater tanks was considering individual building/roof, system volume, and specific investment cost. It is not feasible to conduct such analysis for each and every rainwater harvesting system installed in different buildings. To overcome this tedious practice, this study presents development of a generalised equation for the estimation of payback period for rainwater tanks based on roof area, initial cost, and rate of return. Based on an earlier study, several payback periods were calculated for different roof sizes, initial costs, and rate of return. It was found that all these variables can be correlated and embedded into a base equation of power function. Final developed equation results were compared with the payback periods calculated through traditional practice considering net annual savings and net present value of cumulative savings. It is found that the developed equation can estimate payback periods with very good accuracies; for all the selected internal rates of return correlation values ranging from 0.99 to 1.0 were achieved. Corresponding coefficient of determinations varied from 0.988 to 0.993. Furthermore, it is found that for a fixed roof area and rate of return, the payback period is having a power relationship (having an exponent less than 1.0) with the initial cost.


Sign in / Sign up

Export Citation Format

Share Document