ASSESSMENT OF HEAVY METAL CONTAMINATION OF SOIL SAMPLES COLLECTED FROM THE AREA AROUND AL-MARQUB CEMENT PLANT

Author(s):  
Dr. Salem M. ELNakeib ◽  
Dr. Fathi K. Elyaagubi ◽  
Dr. Mohamed A. Alrabib ◽  
Eng. Afaf Abouzed ◽  
Eng. Hanan Saleh Wanis

Soil samples were collected from and around Almarqub cement factory, AL-Khums city, Libya. These samples were collected from four different sites M1 (inside the factory), M2 (150 m from the factory), M3 (350 m from the factory) and M4 (60 km away from the factory as the control samples. The study was conducted to determine the heavy metal concentration in the soil. Organic matter, pH and water content value were determined according to the method described by Chaturvedi and Sankar (2006). Metals were determined by Atomic Absorption Spectrophotometer. The results obtained for the examined physiochemical properties of soil in the area studied prove that cement dust from the Almarqub cement factory has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These properties were found to be higher than those in similar soils from the same area unpolluted. The increase of soil pH in the same area may be a result of precipitation of cement dust over the years. Metal uptake from cement to soil and plants. Metals determined in contamination soil indicated high concentrations in M1 inside cement factory compared to soil samples as control. Results of the analysis have shown that there are signs of slight impact of soil properties arising from the cement dust on the soils, especially at location inside the factory. Recommendations were offered to monitor the dust falling on the soils through trapping and utilizing the dust emissions of cement.

2020 ◽  
Vol 3 (6) ◽  
pp. 37-44
Author(s):  
Tatiana Kravsun ◽  

The article presents the results of phytotesting of soil solutions with high concentrations of heavy metal ions. The sensitivity of Donbass species plant to soil pollution was established by specific transformations in the structures of the embryonic root Achillea nobilis L., Artemisia vulgaris L., Centaurea diffusa Lam., Galinsoga parviflora Cav., Senecio vulgaris L., Tripleurospermum inodorum (L.) Sch. Bip. Model experiments on plant germination were carried out in laboratory conditions with fixed concentrations of individual metals and with joint pollution, as well as when testing soil samples taken in the zones of influence of industrial facilities of Don-bass.


2016 ◽  
Vol 96 (3) ◽  
pp. 299-304 ◽  
Author(s):  
R.Y. Olobatoke ◽  
M. Mathuthu

Soil contamination with heavy metals is a serious concern to food production and human health. The present study was conducted to evaluate the impact of tailings from an old mining site on heavy metal contamination of soil. Using a GPS to map out different sites around the tailing dam, soil samples were taken from under grassland at the different sites, at depths of 15 cm and 1 m, using a shovel and handheld auger. The samples were prepared, acid digested, and analyzed for a multi-element suite by inductively coupled plasma atomic emission spectrometry. Results showed heavy metal concentration in the order of Cr > Zn > As > Mn > Cu > Pb > Ni > Sr > Hg. Most of the soil samples contained high concentration of As (13.46–234.6 mg kg−1). Soil concentrations of As, Hg, Cr, and Mn also decreased with distance from the dump material. Single contamination index of each pollutant, calculated according to the South African Soil Quality Standards revealed very high and medium pollution grades for As (index = 7.39) and Cr (index = 2.16), respectively. Arsenic is a metal associated with gold ore and soil pollution by such metals can make it infertile and unsuitable for plants.


2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


1994 ◽  
Vol 30 (10) ◽  
pp. 173-177 ◽  
Author(s):  
Lee Chan-Won ◽  
Kwon Young-Tack

Over the past two decades, the coastal waters of Jinhae Bay have been extensively used by coastal communities and industries for the disposal of domestic and various industrial wastes, therefore increasing the level of pollutants in coastal waters with a subsequent increase in sediments, especially of heavy metals. Specific objectives of this research are to investigate the distribution of heavy metal concentration in biota, to compare the concentrations with those in sediment and water and to relate the bioconcentration to the different heavy metals in biota obtained from several sites. Sixty one percent of heavy metals was found in particulate form during the high runoff season and 32% during the dry season. The behavior of the particulate metals after flowing in to the enclosed coastal sea is an important factor in heavy metal contamination. Copper, lead and chromium contamination of sediment was revealed at several sites. The bioconcentration factors (BCFs) of zinc, cadmium, copper, nickel, chromium and lead by the mussel (Mytilus edulis) were determined as 2,900, 2,814, 807, 423, 228 and 127 in the decreasing order, respectively. The areas located nearest to highly populated city and industries exhibited mussels with the largest accumulation of copper, lead and chromium.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
M. Adama ◽  
R. Esena ◽  
B. Fosu-Mensah ◽  
D. Yirenya-Tawiah

Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.


Author(s):  
Muhammad Murtaza Qureshi ◽  
Mohammad Amin Qureshi ◽  
Muhammad Saeed Qureshi ◽  
Afzal Shah

This study was aimed to assess the severity of heavy metal contamination in eastern coastal area of Pakistan. Agriculture lands near district Badin coastal area found contaminated due to mega surface canal drain network, carrying untreated industrial and municipal effluents along with pumped saline water. Thirty-two random soil samples were collected from different coastal areas. Arc Geographic Information System was used for spatial mapping. Soil samples from coastal areas of Badin contain average concentrations of heavy metals (mg/kg) as Hg 0.247±0.207, Ni 2.622±1.107,Zn 3.121±0.929, Cu 0.059±0.066, Fe 70.447±1.163, Mn7.062±1.251, Co 0.0167±0.033,Cr0.799±0.718.


2021 ◽  
Vol 306 ◽  
pp. 04013
Author(s):  
Triyani Dewi ◽  
Edhi Martono ◽  
Eko Hanudin ◽  
Rika Harini

Monitoring and assessment of heavy metal concentrations in shallot fields are needed to evaluate the potential risk of contamination due to heavy metals. This study aims to define the status of heavy metal contamination in shallot fields using contamination indices. A total of 184 soil samples (0-20 cm) were taken from shallot fields in Brebes Regency, Central Java. The soil samples were analyzed for the concentration of five heavy metals (Cd, Pb, Ni, Cr, and Co) with HNO3 and HClO4 extracts and measured using AAS. Assessment of the status of heavy metals contamination in the soil using contaminant factor (CF), geo-accumulation index (I-geo), and pollution load index (PLI). The mean concentration in shallot fields showed the following order Cr > Ni > Pb > Co > Cd and the concentration were still below critical limit values. Four metals are Pb, Cr, Co, and Ni are low contamination (CF<1), while Cd is considerable until very high contamination factor. Based on I-geo values, shallot fields are practically uncontaminated of Pb, Co, Ni, and Cr (I-geo<1), meanwhile the status of Cd is uncontaminated to moderately contaminated (0<I-geo<1). Generally, the shallot fields in Brebes Regency, Central Java is unpolluted with five metals (PLI<1).


Author(s):  
Nachana’a Timothy

Heavy metal concentration in roadside soil and plants are increasingly becoming of health concern. This work determined the concentration of selected heavy metals (Cd, Pb, Zn, Cr, Fe, Mg, Mn, Co, Ni and Cu) in roadside soils and plants samples from selected sites (Plaifu, Shiwa, Fadama-rake and Damdrai) along major road in Hong. Soil samples were taken 10 m, 20 m and 30 m away from the edge of the road at the  depth of 0-10 cm, 10-20 cm and 20-30 cm. Plant samples were randomly collected within the vicinity where the soil samples were taken and were analysed using Atomic Absorption Spectrophotometer. The result revealed the trend in soil heavy metal concentration was Fe > Mn > Mg > Pb > Zn > Ni > Co > Cu > Cr > Cd and for plant the trend was Fe > Mn > Mg > Zn > Pb > Ni > Cu > Cd > Co > Cr. The concentrations decreased with increasing distance away from the edge of the road as well as with depth at which the soil sample were taken. The transfer factor showed that the concentration of Zn, Mn, Cu and Mg were greater than 1, which shows that plant were enriched by Zn, Mn, Cu and Mg from the soil. Mg and Cd equal to 1 at Plaifu and Damdrai. Most of the values of TF at the study area super pass 0.5, which implies that generally, the ability of bioaccumulation of these heavy metals in examined plants were relatively high.


Author(s):  
S.S. Bobade ◽  
S.P. Dhekane ◽  
P.A. Salunke ◽  
S.G. Mane ◽  
S.S. Dhawan ◽  
...  

Background: Crop yields are limited by major biotic and abiotic stresses. Various studies had been suggested that abiotic stresses like drought, flood and salinity play a major role in limiting crop yield. Heavy metal contamination is also a major problem in the agriculture sector.Methods: A pot experiment was conducted to elucidate the effect of inoculating bacterial strains on the wheat plant under various stress conditions. The bacteria were isolated and screened from drought, flood and heavy metal stressed soil samples. The selected strains were identified by morphological, biochemical and molecular methods. The ability of Acinetobacter junni S1, Acinetobacter junni S2, Leclercia adecarboxylata and Klebsiella variicola to stimulate the growth of plants were determined by pot experiment using a completely randomized design. The positive effect of isolates on seed germination percent, shoot and root length of the treated wheat plant were recorded. Analysis of soil samples from pots was carried out for evaluation of the presence of macro and micronutrients. Result: The pots inoculated with selected isolates showed a significant increase in pH 7.77, EC 2.11, carbon 0.78, nitrogen 30.83 kg/ha, phosphorus 2.95 kg/ha, potassium 535.32 kg/ha, zinc 0.15 ppm, manganese 0.376 ppm, iron 0.53 ppm and copper 0.15 ppm as compared to control. The chlorophyll content estimation was carried out by using Arnon’s method. The chlorophyll a, b and total chlorophyll was found to be 14.39, 39.74 and 38.75 respectively.


2019 ◽  
Vol 35 (4) ◽  
pp. 1286-1296 ◽  
Author(s):  
Joan Mwihaki Nyika ◽  
Ednah Kwamboka Onyari ◽  
Megersa Olumana Dinka ◽  
Shivani Bhardwaj Mishra

Heavy metal contamination in soils results from anthropogenic and lithologic factors and is a potential hazard to land and water resources. Sources of such pollution include landfills, domestic sewage, agricultural fertilisers and industries. In this work, soils from Roundhill landfill vicinity in South Africa were sampled and analyzed to determine the concentrations of particular heavy metals, namely As, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn. The main objectives of this work were to: quantify the concentration levels of heavy metals in the soil; determine the mobility of the heavy metals in the soil; and establish their origins and interrelationships. The soils were collected at various distances and depths from the landfill facility. The concentrations of heavy metals in the soil samples were analysed by ICP-MS and statistical analysis was carried out to establish their relationships and sources. From the analysis, some elements including Cr, Mn, Cu and Ni had measured concentrations beyond the threshold limits in most sampling sites irrespective of their distance and depth from the landfill vicinity. Conversely, some elements were observed to be immobile and had higher concentrations on the top soils closer to the landfill, such as As, Pb, Zn, Co and V. Iron (Fe) had high concentrations in all the sampling sites due to its natural occurrence in the parent rocks. In conclusion, the potential of soil quality deterioration due to heavy metal pollution in a landfill vicinity was observed. Furthermore, all heavy metals observed showed positive correlation to each other except for As and Co, indicating same origin.


Sign in / Sign up

Export Citation Format

Share Document