Evaluation of visible implant fluorescent elastomer (VIE) as a tagging technique for spiny lobsters (Jasus edwardsii)

2003 ◽  
Vol 54 (7) ◽  
pp. 853 ◽  
Author(s):  
Chris M. C. Woods ◽  
Philip J. James

Tagging crustaceans for growth studies is often difficult because external tags/marks may be shed or cause mortalities during moulting. In this investigation, the effectiveness of visible implant fluorescent elastomer (VIE) as an invasive tagging technique for spiny lobsters (Jasus edwardsii) was investigated over a 6-month period. Tagged lobsters were either tagged with the tag running transversely across the ventral abdominal superficial flexor muscle block (transverse VIE) in the second abdominal segment, or in-line with the ventral abdominal superficial flexor muscle block (longitudinal VIE). Non-tagged lobsters were used as the control. At the conclusion of the investigation there were no differences in growth or survival between tagged lobsters and untagged controls and tag retention rates were 100% for both tagging treatments over the 6-month period. Tag visibility was high after six months in both tagging treatments, although higher in the longitudinal VIE treatment. Tag fragmentation was frequent in the transverse VIE treatment, but infrequent in the longitudinal VIE treatment. We conclude that VIE is an effective tagging technique for J. edwardsii in terms of the high degree of tag visibility, retention, and non-detrimental impact on the growth and survival of tagged animals, provided the VIE tag is injected in-line with the orientation of the muscle fibres/tissue.

2001 ◽  
Vol 52 (8) ◽  
pp. 1413 ◽  
Author(s):  
Phil J. James ◽  
Lennard J. Tong ◽  
Megan P. Paewai

The effects of stocking density and the presence of shelter on the growth and mortality of early juvenile spiny lobsters, Jasus edwardsii, were determined over periods of 118 and 162 days respectively. Growth in length and weight were significantly slower with increasing stocking densities from 50 to 200 m–2, but overall mortality rates were very low and exhibited no difference amongst the densities tested. Conversely, shelter appeared to help to maintain high survival rates in early juvenile lobsters but had no effect on growth throughout the experiment. For maximum growth and survival in a commercial aquaculture operation, densities of 50 to 100 m–2, and adequate shelter would be recommended for early juvenile spiny lobsters. The implications of these results are discussed in relation to aquaculture of this species.


It was shown in an earlier paper (7) that if maximal stimulation of either of two different afferent nerves can reflexly excite fractions of a given flexor muscle, there are generally, within the aggregate of neurones which innervate that muscle, motoneurones which can be caused to discharge by either afferent (i. e., motoneurones common to both fractions). The relationship which two such afferents bear to a common motoneurone was shown, by the isometric method of recording contraction, to be such that the activation of one afferent, at a speed sufficient to cause a maximal motor tetanus when trans­mitted to the muscle fibres, caused exclusion of any added mechanical effect when the other afferent was excited concurrently. This default in mechanical effect was called “occlusion.” Occlusion may conceivably be due to total exclusion of the effect of one afferent pathway on the common motoneurone by the activity of the other; but facilitation of the effect of one path by the activation of the other when the stimuli were minimal suggests that, in some circumstances at least, the effect of each could augment and summate with th at of the other at the place of convergence of two afferent pathways. Further investigation, using the action currents of the muscle as indication of the nerve impulses discharged by the motoneurone units, has now given some information regarding the effect of impulses arriving at the locus of convergence by one afferent path when the unit common to both is already discharging in response to impulses arriving by the other afferent path. Our method has been to excite both afferent nerves in overlapping sequence by series of break shocks at a rapid rate and to examine the action currents of the resulting reflex for evidence of the appearance of the rhythm of the second series in the discharge caused by the first when the two series are both reaching the motoneurone.


1999 ◽  
Vol 56 (8) ◽  
pp. 1409-1419 ◽  
Author(s):  
Mary C Fabrizio ◽  
James D Nichols ◽  
James E Hines ◽  
Bruce L Swanson ◽  
Stephen T Schram

Data from mark-recapture studies are used to estimate population rates such as exploitation, survival, and growth. Many of these applications assume negligible tag loss, so tag shedding can be a significant problem. Various tag shedding models have been developed for use with data from double-tagging experiments, including models to estimate constant instantaneous rates, time-dependent rates, and type I and II shedding rates. In this study, we used conditional (on recaptures) multinomial models implemented using the program SURVIV (G.C. White. 1983. J. Wildl. Manage. 47: 716-728) to estimate tag shedding rates of lake trout (Salvelinus namaycush) and explore various potential sources of variation in these rates. We applied the models to data from several long-term double-tagging experiments with Lake Superior lake trout and estimated shedding rates for anchor tags in hatchery-reared and wild fish and for various tag types applied in these experiments. Estimates of annual tag retention rates for lake trout were fairly high (80-90%), but we found evidence (among wild fish only) that retention rates may be significantly lower in the first year due to type I losses. Annual retention rates for some tag types varied between male and female fish, but there was no consistent pattern across years. Our estimates of annual tag retention rates will be used in future studies of survival rates for these fish.


1998 ◽  
Vol 201 (12) ◽  
pp. 1885-1893 ◽  
Author(s):  
K Sasaki ◽  
M Burrows

The flexor tibiae muscle of a locust hind leg consists of 10-11 pairs of fibre bundles in the main body of the muscle and a distal pair of bundles that form the accessory flexor muscle, all of which insert onto a common tendon. It is much smaller than the antagonistic extensor tibiae muscle and yet it is innervated by nine excitatory motor neurons, compared with only two for the extensor. To determine the pattern of innervation within the muscle by individual motor neurons, branches of the nerve (N5B2) that supplies the different muscle bundles were backfilled to reveal somata in the metathoracic ganglion. This showed that different muscle bundles are innervated by different numbers of excitatory motor neurons. Physiological mapping of the innervation was then carried out by intracellular recordings from the somata of flexor motor neurons in the metathoracic ganglion using microelectrodes. Spikes were evoked in these neurons by the injection of current, and matching junctional potentials were sought in fibres throughout the muscle using a second intracellular electrode. Each motor neuron innervates only a restricted array of muscle fibres and, although some innervate a larger array than others, none innervates fibres throughout the muscle. Some motor neurons innervate only proximal fibres and others only more distal fibres, so that the most proximal and most distal bundles of muscle fibres are innervated by non-overlapping sets of motor neurons. More motor neurons innervate proximal bundles than distal ones, and there are some asymmetries in the number of motor neurons innervating corresponding bundles on either side of the tendon. Individual motor neurons cause slow, fast or intermediate movements of the tibia, but their patterns of innervation overlap in the different muscle bundles. Furthermore, individual muscle fibres may also be innervated by motor neurons with different properties.


1980 ◽  
Vol 88 (1) ◽  
pp. 249-258
Author(s):  
CHRISTINE E. PHILLIPS

The anatomical and physiological organization of the locust metathoracic flexor tibiae was examined by a combination of intracellular recording and electron microscopy. Nine excitatory motor neurones, three fast, three intermediate and three slow innervate the muscle; each is uniquely identifiable using a combination of physiological response and soma location. A simple spatial distribution of inputs to the muscle from the individual motor neurones was not found. Individual muscle fibres responded to as many as seven of the motor neurones in various combinations. The muscle fibres are heterogeneous, ranging from slow (tonic) to fast (phasic) in a continuum from predominantly phasic proximally to tonicdistally. This is demonstrated by contraction and relaxation rates to directand indirect stimulation, as well as contraction elicited by action potentials in a single flexor motor neurone. The fast and slow contractile properties of the muscle fibres are matched by appropriate ultrastructures. Such a high degree of complexity of neuromuscular innervation as that found in the metathoracic flexor tibiae has not previously been described for an arthropod muscle.


2000 ◽  
Vol 203 (23) ◽  
pp. 3595-3602 ◽  
Author(s):  
H. Aonuma ◽  
T. Nagayama ◽  
M. Takahata

A characteristic physiological property of the neuromuscular junction between giant motor neurones (MoGs) and fast flexor muscles in crayfish is synaptic depression, in which repetitive electrical stimulation of the MoG results in a progressive decrease in excitatory junction potential (EJP) amplitude in flexor muscle fibres. Previous studies have demonstrated that l-arginine (l-Arg) modulates neuromuscular transmission. Since l-Arg is a precursor of nitric oxide (NO), we examined the possibility that NO may be involved in modulating neuromuscular transmission from MoGs to abdominal fast flexor muscles. The effect of a NO-generating compound, NOC7, was similar to that of l-Arg, reversibly decreasing the EJP amplitude mediated by the MoG. While NOC7 reduced the amplitude of the EJP, it induced no significant change in synaptic depression. In contrast, a scavenger of free radical NO, carboxy-PTIO, and an inhibitor of nitric oxide synthase, l-NAME, reversibly increased the EJP amplitude mediated by MoGs. Synaptic depression mediated by repetitive stimulation of MoGs at 1 Hz was partially blocked by bath application of l-NAME. Bath application of a NO scavenger, a NOS inhibitor and NO-generating compounds had no significant effects on the depolarisation of the muscle fibres evoked by local application of l-glutamate. The opposing effects on EJP amplitude of NOC7 and of carboxy-PTIO and l-NAME suggest that endogenous NO presynaptically modulates neuromuscular transmission and that it could play a prominent role at nerve terminals in eliciting MoG-mediated synaptic depression in the crayfish Procambarus clarkii.


2001 ◽  
Vol 204 (20) ◽  
pp. 3531-3545
Author(s):  
Uwe Rose ◽  
Michael Ferber ◽  
Reinhold Hustert

SUMMARY The oviposition of female locusts requires longitudinal muscles to tolerate remarkable lengthening. Whether this ability together with concomitant properties develops during maturation or is present throughout life was investigated. The properties of the locust abdominal muscles involved in oviposition behaviour were investigated with respect to their maturation, segment- and gender-specificity and regulation by juvenile hormone (JH). Muscles from the sixth abdominal segment (an oviposition segment) of mature females (>18 days old) were able to tolerate large extensions (>8 mm). At this length, muscles were still able to generate considerable neurally evoked twitch tension. In contrast, muscle fibres from females less than 5 days old did not tolerate extension of more than 4 mm. At this length, tension generation was negligible. The maximum tension generated at different stimulus frequencies was significantly higher in muscles of females more than 18 days old than in females less than 5 days old. Furthermore, the cross-sectional area of muscle fibres increased significantly during reproductive development. Current-clamp recordings from denervated muscle fibres of females more than 18 days old revealed their ability to generate overshooting action potentials. The potentials were tetrodotoxin (TTX)-insensitive (0.5 μmol l–1 TTX), but were blocked by Cd2+ (50 μmol l–1) or nifedipine (50 μmol l–1), which suggests the involvement of L-type Ca2+ channels. Action potentials recorded from females less than 5 days old differed considerably in amplitude and shape from those recorded from females more than 18 days old, suggesting their maturation during the first 2 weeks of adult life. Inactivation of the corpora allata (CA) by precocene inhibited the maturation of these muscle properties, whereas injection of JH into precocene-treated females reversed this effect. Homologous muscles from the third abdominal segment (a non-oviposition segment, M169) and muscles from males (M214) revealed no comparable changes, although some minor changes occurred during reproductive development. The results suggest a gender- and segment-specific maturation of muscle properties that is related to reproductive behaviour and controlled by JH.


2012 ◽  
Vol 33 (2) ◽  
pp. 313-317 ◽  
Author(s):  
Shem D. Unger ◽  
Nicholas G. Burgmeier ◽  
Rod N. Williams

Estimation of population size using mark-recapture (MRR) methods are based on the fundamental assumption that individuals retain their marks throughout the course of study. Passive Integrated Transponder (PIT) tags are useful as a cost effective, reliable marking method in many amphibian and reptile species. Few studies however, use secondary methods to evaluate tag retention rates. Failure to do so can lead to biased population estimates, erroneous conclusions, and thus poor management decisions. Surprisingly, estimates of PIT tag retention are currently lacking for the majority of amphibian species, many of which are experiencing population declines. Herein, we use genetic tagging to assess the retention of PIT tags of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis). We captured and tagged 78 individuals across 35 sites. Recapture rate was 24% and genetic tagging revealed 100% tag retention across all recaptured individuals.


Aquaculture ◽  
2008 ◽  
Vol 280 (1-4) ◽  
pp. 211-219 ◽  
Author(s):  
Cedric J. Simon ◽  
Andrew Jeffs

Sign in / Sign up

Export Citation Format

Share Document