scholarly journals Ecosystem metabolism in a dryland river waterhole

2007 ◽  
Vol 58 (3) ◽  
pp. 250 ◽  
Author(s):  
C. S. Fellows ◽  
M. L. Wos ◽  
P. C. Pollard ◽  
S. E. Bunn

Little is known about ecosystem processes in dryland rivers, despite the global distribution of these systems. Those in Australia are characterised by long periods of no flow in which they persist for many months as series of isolated, often turbid, waterholes. We assessed benthic and pelagic primary production, respiration, and bacterial production in one of these waterholes to determine the metabolic balance of the waterhole and resolve the relative importance of autochthonous and allochthonous sources of organic carbon. Despite a photic zone depth of only 0.25 m, three lines of evidence suggested that autochthonous sources of organic carbon were important for fuelling bacterial production under no-flow conditions: the metabolic balance of the waterhole was not indicative of large allochthonous inputs; rates of gross primary production were great enough to meet a substantial fraction of estimated bacterial carbon demand; and pathways for allochthonous carbon to enter the waterhole were limited. These results suggest that models of lake metabolism based on temperate ecosystems can be expanded to include dryland river waterholes, which group with eutrophic lakes owing to their high levels of inorganic nutrients, low allochthonous inputs and autotrophic metabolic balance.

Author(s):  
Robert Hall ◽  
Jennifer Tank ◽  
Michelle Baker ◽  
Emma Rosi-Marshall ◽  
Michael Grace ◽  
...  

Primary production and respiration are core functions of river ecosystems that in part determine the carbon balance. Gross primary production (GPP) is the total rate of carbon fixation by autotrophs such as algae and higher plants and is equivalent to photosynthesis. Ecosystem respiration (ER) measures rate at which organic carbon is mineralized to CO2 by all organisms in an ecosystem. Together these fluxes can indicate the base of the food web to support animal production (Marcarelli et al. 2011), can predict the cycling of other elements (Hall and Tank 2003), and can link ecosystems to global carbon cycling (Cole et al. 2007).


2020 ◽  
Vol 8 (10) ◽  
pp. 767 ◽  
Author(s):  
Daniel M. Alongi

Mangroves and salt marshes are among the most productive ecosystems in the global coastal ocean. Mangroves store more carbon (739 Mg CORG ha−1) than salt marshes (334 Mg CORG ha−1), but the latter sequester proportionally more (24%) net primary production (NPP) than mangroves (12%). Mangroves exhibit greater rates of gross primary production (GPP), aboveground net primary production (AGNPP) and plant respiration (RC), with higher PGPP/RC ratios, but salt marshes exhibit greater rates of below-ground NPP (BGNPP). Mangroves have greater rates of subsurface DIC production and, unlike salt marshes, exhibit active microbial decomposition to a soil depth of 1 m. Salt marshes release more CH4 from soil and creek waters and export more dissolved CH4, but mangroves release more CO2 from tidal waters and export greater amounts of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC), to adjacent waters. Both ecosystems contribute only a small proportion of GPP, RE (ecosystem respiration) and NEP (net ecosystem production) to the global coastal ocean due to their small global area, but contribute 72% of air–sea CO2 exchange of the world’s wetlands and estuaries and contribute 34% of DIC export and 17% of DOC + POC export to the world’s coastal ocean. Thus, both wetland ecosystems contribute disproportionately to carbon flow of the global coastal ocean.


2010 ◽  
Vol 7 (12) ◽  
pp. 4051-4057 ◽  
Author(s):  
C. M. Duarte ◽  
Y. T. Prairie ◽  
T. K. Frazer ◽  
M. V. Hoyer ◽  
S. K. Notestein ◽  
...  

Abstract. The concentration of dissolved organic carbon (DOC) in groundwater emanating as spring discharge at several locations in Florida, USA and the net increase in DOC in the downstream receiving waters were measured as part of a larger investigation of carbon dynamics in flowing waters. Springs with high discharge (>2.8 m3 s−1) were found to be the most organic-poor natural waters yet reported (13 ± 1.6 μmol C L−1), while springs with lesser discharge exhibited somewhat higher DOC concentrations (values ranging from 30 to 77 μmol C L−1). DOC concentrations increased rapidly downstream from the point of spring discharge, with the calculated net areal input rate of DOC ranging from 0.04 to 1.64 mol C m−2 d−1 across springs. Rates of DOC increase were generally greater in those springs with high discharge rates. These input rates compare favorably with values reported for gross primary production in these macrophyte-dominated spring systems, assuming that 17% of macrophyte primary production is lost, on average, as DOC. The measures reported here are possible only because of the remarkably low DOC levels in the up-surging groundwaters and the short residency times of the water in the spring-runs themselves.


2006 ◽  
Vol 63 (5) ◽  
pp. 1130-1141 ◽  
Author(s):  
George H Lauster ◽  
Paul C Hanson ◽  
Timothy K Kratz

Net ecosystem production (NEP) trends among lakes have been ascribed to differences in nutrient and allochthonous carbon inputs, but little is known on how different habitats within lakes contribute to these trends. We sampled pelagic and littoral surface waters using sonde (i.e., free-water) and bottle methods concurrently in lakes spanning a range of trophic conditions. We considered whether the typically higher metabolism estimates found with sonde methods are due to contributions from littoral habitats not reflected by bottle estimates. We sought the source of littoral contributions by selecting sites with maximum differences in macrophyte abundance. Sonde estimates for pelagic primary production and respiration were two–three times greater than bottle estimates. Sonde/bottle ratios were higher in productive lakes and lakes with more littoral area. Bottle estimates were similar among all sites, and sonde estimates in macrophyte-poor sites were similar to pelagic sondes. However, sonde estimates in macrophyte-rich areas were four–nine times greater than bottle estimates. Results suggest littoral zones increase whole-lake NEP in eutrophic systems, whereas the Sphagnum mat surrounding dystrophic lakes decreases NEP. Non-planktonic organisms associated with macrophytes provide important littoral contributions to whole-lake metabolism and to understanding NEP trends among lakes.


2010 ◽  
Vol 7 (4) ◽  
pp. 5253-5267
Author(s):  
C. M. Duarte ◽  
R. Martínez ◽  
Y. T. Prairie ◽  
T. K. Frazer ◽  
M. V. Hoyer ◽  
...  

Abstract. The concentration of dissolved organic carbon (DOC) in groundwater emanating as spring discharge at several locations in Florida, USA, and the net rate of DOC increase in the downstream receiving waters were measured as part of a larger investigation of carbon dynamics in flowing waters. Springs with high discharge (>2.8 m3 s−1) were found to be the most organic-poor natural waters yet reported (13 ±1.6 μmol C L−1), while springs with lesser discharge exhibited somewhat higher DOC concentrations (values ranging from 30 to 77 μmol C L−1). DOC concentrations increased rapidly downstream from the point of spring discharge, with the calculated net areal input rate of DOC ranging from 0.04 to 1.64 mol C m−2 d−1 across springs. Rates of DOC increase were generally greater in those springs with high discharge rates. These input rates compare favorably with values reported for gross primary production in these macrophyte-dominated spring systems, assuming that 17% of macrophyte primary production is lost, on average, as DOC. The measures reported here are possible only because of the remarkably low DOC levels in the up-surging groundwaters and the short residency times of the water in the spring-runs themselves.


2021 ◽  
Author(s):  
Gaël Many ◽  
Caroline Ulses ◽  
Claude Estournel ◽  
Patrick Marsaleix

Abstract. The Gulf of Lion shelf (NW Mediterranean) is one of the most productive areas in the Mediterranean Sea. A 3D coupled hydrodynamic-biogeochemical model is used to study the mechanisms that drive the particulate organic carbon (POC) budget over the shelf. A set of observations, including temporal series from a coastal station, remote sensing of surface chlorophyll-a, and a glider deployment, is used to validate the distribution of physical and biogeochemical variables from the model. The model reproduces well the time and spatial evolution of temperature, chlorophyll, and nitrate concentrations and shows a clear annual cycle of gross primary production and respiration. Knowing the physical and biogeochemical inputs and outputs terms, the annual budget of the POC in the Gulf of Lion is estimated and discussed. We estimate an annual net primary production of ~200 104 tC yr−1 at the scale of the shelf. The primary production is marked by a coast-slope increase with maximal values in the eastern region. Our results show that the primary production is favored by the inputs of nutrients imported from offshore waters, representing 3 and 15 times the inputs of the Rhône in terms of nitrate and phosphate. Besides, the EOFs decomposition highlights the role of solar radiation anomalies and continental winds that favor upwellings, and inputs of the Rhône River, on annual changes in the net primary production. Annual POC deposition (19 104 tC yr−1) represents 10 % of the net primary production. The delivery of terrestrial POC favored the deposition in front of the Rhône mouth and the mean cyclonic circulation increases the deposition between 30 and 50 m depth from the Rhône prodelta to the west. Mechanisms responsible for POC export (24 104 tC yr−1) to the open sea are discussed. The export off the shelf in the western part, from the Cap de Creus to the Lacaze-Duthiers canyon, represented 37 % of the total POC export. Maximum values were obtained during shelf dense water cascading events and marine winds. Considering surface waters only, the POC was mainly exported in the eastern part of the shelf through shelf waters and Rhône inputs, which spread to the Northern Current during favorable continental wind conditions. The Gulf of Lion shelf appears as an autotrophic ecosystem with a positive Net Ecosystem Production and as a source of POC for the adjacent NW Mediterranean basin. The undergoing and future increase in temperature and stratification induced by climate change could impact the trophic status of the GoL shelf and the carbon export towards the deep basin. It is crucial to develop models to predict and assess these future evolutions.


2015 ◽  
Vol 12 (23) ◽  
pp. 19579-19626 ◽  
Author(s):  
S. Bonnet ◽  
H. Berthelot ◽  
K. Turk-Kubo ◽  
S. Fawcett ◽  
E. Rahav ◽  
...  

Abstract. N2 fixation rates were measured daily in large (~ 50 m3) mesocosms deployed in the tropical South West Pacific coastal ocean (New Caledonia) to investigate the spatial and temporal dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) in a low nutrient, low chlorophyll ecosystem. The mesocosms were intentionally fertilized with ~ 0.8 μM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L−1 d−1 over the 23 days, and increased by a factor of two during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L−1 d−1. These rates are higher than the upper range reported for the global ocean, indicating that the waters surrounding New Caledonia are particularly favourable for N2 fixation. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon, nitrogen and phosphorus, and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during the bloom of the unicellular diazotroph, UCYN-C, that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 μm) UCYN-C cells into large (100–500 μm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton, mainly picoplankton (18 ± 4 %) followed by diatoms (3 ± 2 %) within 24 h of incubation. This is consistent with the observed dramatic increase in picoplankton and diatom abundances, primary production, bacterial production and standing stocks of particulate organic carbon, nitrogen and phosphorus during the second half of the experiment in the mesocosms. These results offer insights into the fate of DDN during a bloom of UCYN-C in low nutrient, low chlorophyll ecosystems.


2012 ◽  
Vol 9 (5) ◽  
pp. 6015-6050 ◽  
Author(s):  
E. Ortega-Retuerta ◽  
W. H. Jeffrey ◽  
M. Babin ◽  
S. Bélanger ◽  
R. Benner ◽  
...  

Abstract. During August 2009, measurements of bacterial abundance and nucleic acid content were made along with production and respiration in coastal waters of the Beaufort Sea (Arctic Ocean), an area influenced by the Mackenzie River inflow. The main purpose was to evaluate bacterial organic carbon processing with respect to local sources, mainly primary production and river inputs. Bacterial production and abundance generally decreased from river to offshore waters and from surface to deep waters. In contrast, the percentage of high nucleic acid bacteria was higher in deep waters rather than in surface or river waters. Statistical analyses indicated that bacterial production was primarily controlled by temperature and the availability of labile organic matter, as indicated by total dissolved amino acid concentrations. Direct comparisons of bacterial carbon demand and primary production indicated net heterotrophy was common in shelf waters. Net autotrophy was observed at stations in the Mackenzie River plume, suggesting that the carbon fixed in plume waters helped fuel net heterotrophy in the Beaufort Sea margin.


Sign in / Sign up

Export Citation Format

Share Document