Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes

2012 ◽  
Vol 63 (11) ◽  
pp. 1098 ◽  
Author(s):  
Kaelin M. Cawley ◽  
Yan Ding ◽  
James Fourqurean ◽  
Rudolf Jaffé

Low latitude, seagrass-dominated coastal bays, such as Shark Bay, Australia, are potential sources of chromophoric dissolved organic matter (CDOM) to coastal regions. Dissolved organic matter (DOM) is known to influence aquatic nutrient dynamics, microbial community structure, and depth of light penetration in estuarine systems. Shark Bay is a sub-tropical ecosystem with limited freshwater inputs and restricted tidal flushing. As such, much of the DOM is expected to be seagrass-derived. However, combining excitation/emission fluorescence spectroscopy and parallel factor analysis (EEM-PARFAC) with 13C stable isotope analysis of DOM, we found evidence for DOM inputs from terrestrial (riverine and possibly groundwater), autochthonous plankton, macroalgae, and seagrass sources. Isotopic analysis of 13C in DOM supports the idea that seagrass inputs contribute substantially to the DOM pool in Shark Bay, whereas, EEM-PARAFAC data suggests that much of this input is derived from decomposing seagrass detritus and to a lesser extent due to exudation during primary production. We also report increases in DOM concentrations and changes in DOM characteristics with increasing salinity in surface water samples, indicating that evaporation is an important control on DOM concentration and photo-degradation may play a critical role in transforming DOM within the system.

2021 ◽  
Vol 8 ◽  
Author(s):  
Rachel P. Martineac ◽  
Alexey V. Vorobev ◽  
Mary Ann Moran ◽  
Patricia M. Medeiros

Uncovering which biogeochemical processes have a critical role controlling dissolved organic matter (DOM) compositional changes in complex estuarine environments remains a challenge. In this context, the aim of this study is to characterize the dominant patterns of variability modifying the DOM composition in an estuary off the Southeastern U.S. We collected water samples during three seasons (July and October 2014 and April 2015) at both high and low tides and conducted short- (1 day) and long-term (60 days) dark incubations. Samples were analyzed for bulk DOC concentration, and optical (CDOM) and molecular (FT-ICR MS) compositions and bacterial cells were collected for metatranscriptomics. Results show that the dominant pattern of variability in DOM composition occurs at seasonal scales, likely associated with the seasonality of river discharge. After seasonal variations, long-term biodegradation was found to be comparatively more important in the fall, while tidal variability was the second most important factor correlated to DOM composition in spring, when the freshwater content in the estuary was high. Over shorter time scales, however, the influence of microbial processing was small. Microbial data revealed a similar pattern, with variability in gene expression occurring primarily at the seasonal scale and tidal influence being of secondary importance. Our analyses suggest that future changes in the seasonal delivery of freshwater to this system have the potential to significantly impact DOM composition. Changes in residence time may also be important, helping control the relative contribution of tides and long-term biodegradation to DOM compositional changes in the estuary.


2006 ◽  
Vol 52 (6) ◽  
pp. 540-549 ◽  
Author(s):  
Ola A Olapade ◽  
Laura G Leff

Stream bacteria may be influenced by the composition and availability of dissolved organic matter (DOM) and inorganic nutrients, but knowledge about how individual phylogenetic groups in biofilm are affected is still limited. In this study, the influence of DOM and inorganic nutrients on stream biofilm bacteria was examined. Biofilms were developed on artificial substrates (unglazed ceramic tiles) for 21 days in a northeastern Ohio (USA) stream for five consecutive seasons. Then, the developed biofilm assemblages were exposed, in the laboratory, to DOM (glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate, phosphate, and nitrate and phosphate in combination) amendments for 6 days. Bacterial numbers in the biofilms were generally higher in response to the DOM treatments than to the inorganic nutrient treatments. There were also apparent seasonal variations in the response patterns of the individual bacterial taxa to the nutrient treatments; an indication that limiting resources to bacteria in stream biofilms may change over time. Overall, in contrast to the other treatments, bacterial abundance was generally highest in response to the low-molecular-weight DOM (i.e., glucose) treatment. These results further suggest that there are interactions among the different bacterial groups in biofilms that are impacted by the associated nutrient dynamics among seasons in stream ecosystems.Key words: biofilms, nutrients, DOM, bacteria, in situ hybridization.


2019 ◽  
Author(s):  
Shin-Ah Lee ◽  
Tae-Hoon Kim ◽  
Guebuem Kim

Abstract. The sources of dissolved organic matter (DOM) in coastal waters are diverse, and they play different roles in biogeochemistry and ecosystems. In this study, we measured dissolved organic carbon (DOC) and nitrogen (DON), δ13C-DOC, and fluorescent dissolved organic matter (FDOM) in coastal bay waters surrounded by heavily industrialized cities (Masan Bay, Korea) to determine the different DOM sources in this region. The surface seawater samples were collected in two sampling campaigns (Aug. 2011 and Aug. 2016). The salinities ranged from 10 to 21 in 2011 and from 25.4 to 32 in 2016. In 2011, the excess DOC was observed for higher-salinity waters (16–21), indicating its main source from marine autochthonous production according to the δ13C-DOC values of −23.7 ‰ to −20.6 ‰, higher concentrations of protein-like FDOM, and lower DOC / DON (C / N) ratios. By contrast, the high DOC waters in high-salinity waters of 2016 were characterized by low FDOM, more depleted δ13C values of −28.8 ‰ to −21.1 ‰, and high C / N ratios, suggesting that the excess DOC is influenced by direct land-seawater interactions. Our results show that multiple DOM tracers such as δ13C-DOC, FDOM, and C / N ratios are powerful for discriminating the complicated sources of DOM in coastal waters.


2012 ◽  
Vol 112 (1-3) ◽  
pp. 571-587 ◽  
Author(s):  
Alex T. Chow ◽  
Jianing Dai ◽  
William H. Conner ◽  
Daniel R. Hitchcock ◽  
Jun-Jian Wang

2021 ◽  
Author(s):  
Ang Hu ◽  
Mira Choi ◽  
Andrew J Tanentzap ◽  
Jingfu Liu ◽  
Kyoung-Soon Jang ◽  
...  

Microbes play a critical role in regulating the size, composition, and turnover of dissolved organic matter (DOM), which is one of the largest pools of carbon in aquatic ecosystems. Global change may alter DOM-microbe associations with implications for biogeochemical cycles, although disentangling these complex interactions remains a major challenge. Here we develop a framework called Energy-Diversity-Trait integrative Analysis (EDTiA) to examine the associations between DOM and bacteria along temperature and nutrient gradients in a manipulative field experiment on mountainsides in contrasting subarctic and subtropical climates. In both study regions, the chemical composition of DOM correlated with bacterial communities, and was primarily controlled by nutrients and to a lesser degree by temperature. At a molecular-level, DOM-bacteria associations depended strongly on the molecular traits of DOM, with negative associations indicative of decomposition as molecules are more biolabile. Using bipartite networks, we further demonstrated that negative associations were more specialized than positive associations indicative of DOM production. Nutrient enrichment promoted specialization of positive associations, but decreased specialization of negative associations particularly at warmer temperatures in subtropical climate. These global change drivers influenced specialization of negative associations most strongly via molecular traits, while both molecular traits and bacterial diversity similarly affected positive associations. Together, our framework provides a quantitative approach to understand DOM-microbe associations and wider carbon cycling across scales under global change.


Sign in / Sign up

Export Citation Format

Share Document