Morphologically similar, coexisting hard corals (Porites lobata and P. solida) display similar trophic isotopic ratios across reefs and depths

2016 ◽  
Vol 67 (5) ◽  
pp. 671 ◽  
Author(s):  
Jeremiah G. Plass-Johnson ◽  
Christopher D. McQuaid ◽  
Jaclyn M. Hill

Recent studies using stable isotope analysis in scleractinian corals have highlighted strong inter- and intra-specific variability in isotopic ratios, but few have excluded the effects of morphology, which affects resource acquisition, potentially confounding this with metabolic differences among species. Differences in the stable isotopic (δ13C and δ15N) ratios of the coral host tissue and photosymbionts of two co-existing, morphologically similar Porites corals (P. lobata and P. solida) were examined across nested spatial scales (inter-reefs and intra-reef) and across depths in Zanzibar, Tanzania. There were few differences between species in either coral host or photosymbiont isotopic ratios, but the two tissues showed different spatial patterns. Photosymbionts showed variation only in their δ13C ratios, which differed among reefs, but not by depth. In contrast, the coral hosts differed in δ13C and δ15N values among reefs and also by depth. Within-reef differences among sites occurred only for photosymbionts at one reef. The absence of differences in isotopic ratios between the two Porites species across reefs and depths, confirms that highly related and morphologically similar scleractinian corals may occupy similar ecosystem niches, metabolising resources in a similar fashion. This suggests that resource partitioning among corals, and subsequent isotopic variability, is most likely driven by resource acquisition, rather than being inherently species-specific.

2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 482
Author(s):  
Won Young Lee ◽  
Seongseop Park ◽  
Kil Won Kim ◽  
Jeong-Hoon Kim ◽  
Jong-Ku Gal ◽  
...  

Theory predicts that sympatric predators compete for food under conditions of limited resources. Competition would occur even within the same species, between neighboring populations, because of overlapping foraging habits. Thus, neighboring populations of the same species are hypothesized to face strong competition. To test the hypothesis that intra-specific competition is more intense than inter-specific competition owing to a lack of niche partitioning, we estimated the foraging area and diving depths of two colonial seabird species at two neighboring colonies. Using GPS and time-depth recorders, we tracked foraging space use of sympatric breeding Chinstrap and Gentoo penguins at Ardley Island (AI) and Narębski Point (NP) at King George Island, Antarctica. GPS tracks showed that there was a larger overlap in the foraging areas between the two species than within each species. In dive parameters, Gentoo penguins performed deeper and longer dives than Chinstrap penguins at the same colonies. At the colony level, Gentoo penguins from NP undertook deeper and longer dives than those at AI, whereas Chinstrap penguins did not show such intra-specific differences in dives. Stable isotope analysis of δ13C and δ15N isotopes in blood demonstrated both inter- and intra-specific differences. Both species of penguin at AI exhibited higher δ13C and δ15N values than those at NP, and in both locations, Gentoo penguins had higher δ13C and lower δ15N values than Chinstrap penguins. Isotopic niches showed that there were lower inter-specific overlaps than intra-specific overlaps. This suggests that, despite the low intra-specific spatial overlap, diets of conspecifics from different colonies remained more similar, resulting in the higher isotopic niche overlaps. Collectively, our results support the hypothesis that intra-specific competition is higher than inter-specific competition, leading to spatial segregation of the neighboring populations of the same species.


2000 ◽  
Vol 75 (1) ◽  
pp. 37-45 ◽  
Author(s):  
ANNELI HOIKKALA ◽  
SELIINA PÄÄLLYSAHO ◽  
JOUNI ASPI ◽  
JAAKKO LUMME

The males of six species of the Drosophila virilis group (including D. virilis) keep their wings extended while producing a train of sound pulses, where the pulses follow each other without any pause. The males of the remaining five species of the group produce only one sound pulse during each wing extension/vibration, which results in species-specific songs with long pauses (in D. littoralis about 300 ms) between successive sound pulses. Genetic analyses of the differences between the songs of D. virilis and D. littoralis showed that species-specific song traits are affected by genes on the X chromosome, and for the length of pause, also by genes on chromosomes 3 and 4. The X chromosomal genes having a major impact on pulse and pause length were tightly linked with white, apricot and notched marker genes located at the proximal third of the chromosome. A large inversion in D. littoralis, marked by notched, prevents more precise localization of these genes by classical crossing methods.


2008 ◽  
Vol 84 (4) ◽  
pp. 548-552 ◽  
Author(s):  
Antony W Diamond

Research on forest bird ecology in the ACWERN (Atlantic Cooperative Wildlife Ecology Research Network) lab at the University of New Brunswick, Fredericton, since 1995 has focused on assessing the relative contributions of habitat quality at large (“landscape”) and small (“local” or “stand”) spatial scales. To do so we had to develop methods for assessing key demographic components of fitness (productivity and survival) at large spatial scales. The large extent of forest cover in the Maritimes contrasts with regions where such work has traditionally been carried out, in which forest is clearly fragmented by agriculture or residential development. Our main findings are that spatial effects in highly forested landscapes can often be detected only by using species-specific habitat models, rather than broader categories such as “mature” or “softwood”, that Blackburnian Warblers (Dendroica fusca) are effective indicators of mixedwood forest but define it differently than forest managers do, and that cavity nesters (e.g., woodpeckers) may require different habitat components for nesting and feeding and so cannot be managed for solely on the basis of providing snags for nesting. Our focus has shifted recently to intensive studies on a species at risk, Bicknell's Thrush (Catharus bicknelli), which in New Brunswick breeds in man-made regenerating softwood forest stands, and assessing its response both to precommercial thinning of the breeding habitat and to effects carrying over from the winter habitat in the Caribbean. Key words: landscape effects, thresholds, survival, productivity, fitness, carry-over, habitat, fragmentation


ADMET & DMPK ◽  
2022 ◽  
Author(s):  
Marilyn N. Martinez ◽  
Mark G. Papich ◽  
Raafat Fahmy

Many gaps exist in our understanding of species differences in gastrointestinal (GI) fluid composition and the associated impact of food intake and dietary composition on in vivo drug solubilization. This information gap can lead to uncertainties with regard to how best to formulate pharmaceuticals for veterinary use or the in vitro test conditions that will be most predictive of species-specific in vivo oral product performance. To address these challenges, this overview explores species-specific factors that can influence oral drug solubility and the formulation approaches that can be employed to overcome solubility-associated bioavailability difficulties. These discussions are framed around some of the basic principles associated with drug solubilization, reported species differences in GI fluid composition, types of oral dosage forms typically given for the various animal species, and the effect of prandial state in dogs and cats. This basic information is integrated into a question-and-answer section that addresses some of the formulation issues that can arise in the development of veterinary medicinals.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kerry MM Walker ◽  
Ray Gonzalez ◽  
Joe Z Kang ◽  
Josh H McDermott ◽  
Andrew J King

Pitch perception is critical for recognizing speech, music and animal vocalizations, but its neurobiological basis remains unsettled, in part because of divergent results across species. We investigated whether species-specific differences exist in the cues used to perceive pitch and whether these can be accounted for by differences in the auditory periphery. Ferrets accurately generalized pitch discriminations to untrained stimuli whenever temporal envelope cues were robust in the probe sounds, but not when resolved harmonics were the main available cue. By contrast, human listeners exhibited the opposite pattern of results on an analogous task, consistent with previous studies. Simulated cochlear responses in the two species suggest that differences in the relative salience of the two pitch cues can be attributed to differences in cochlear filter bandwidths. The results support the view that cross-species variation in pitch perception reflects the constraints of estimating a sound’s fundamental frequency given species-specific cochlear tuning.


Sign in / Sign up

Export Citation Format

Share Document