scholarly journals Quantitative electron microprobe mapping of otoliths suggests elemental incorporation is affected by organic matrices: implications for the interpretation of otolith chemistry

2016 ◽  
Vol 67 (7) ◽  
pp. 889 ◽  
Author(s):  
A. McFadden ◽  
B. Wade ◽  
C. Izzo ◽  
B. M. Gillanders ◽  
C. E. Lenehan ◽  
...  

In an effort to understand the mechanism of otolith elemental incorporation, the distribution of strontium (Sr) and sulfur (S) in otoliths of Platycephalus bassensis was investigated in conjunction with otolith growth patterns. Optimisation of electron probe microanalysis (EPMA) quantitative mapping achieved both high spatial resolution (<3µm) and two-dimensional visualisation of the fine scale Sr and S distributions in otoliths of P. bassensis with minimal damage. Electron backscatter diffraction (EBSD) mapping confirmed that grain growth is aligned with the otolith c-axis, with grain orientation independent of both otolith elemental composition and growth patterns. Results showed a linear correlation between Sr and S distribution (R2=0.86), and a clear association with the otolith growth patterns determined by scanning electron microscopy. Further examination by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) showed that incorporation of Mg and Ba appeared independent of both S distribution and the growth patterns. The results suggest that element incorporation into the otolith is linked to the organic composition in the endolymph during mineralisation, and the organic matrices may assist, in part, the uptake of Sr. Thus, these findings may have significant implications for the interpretation of otolith Sr chemistry.

2020 ◽  
Vol 35 (8) ◽  
pp. 1552-1557 ◽  
Author(s):  
Victor Garcia-Montoto ◽  
Sylvain Mallet ◽  
Carine Arnaudguilhem ◽  
Jan H. Christensen ◽  
Brice Bouyssiere

A new total consumption micronebuliser for ICP-MS was developed and optimised in this work.


Geology ◽  
2021 ◽  
Author(s):  
Ya-Fei Wu ◽  
Katy Evans ◽  
Si-Yu Hu ◽  
Denis Fougerouse ◽  
Mei-Fu Zhou ◽  
...  

Gold (Au) is largely hosted by pyrite in a variety of hydrothermal systems, but the incorporation of Au into pyrite under disequilibrium conditions remains poorly understood. We integrate synchrotron X-ray fluorescence microscopy, electron backscatter diffraction, nanoscale secondary ion mass spectrometry, and laser ablation–multicollector–inductively coupled plasma–mass spectrometry to constrain the processes that sequester Au into zoned pyrite in the hydrothermal cement of breccia ores from the world-class Daqiao orogenic Au deposit, central China. Euhedral pyrite cores with oscillatory and sector zoning, variable δ34S values, and lower Au-As contents than the mantles are attributed to crystallization during oxidation of metal-depleted ore fluids with local variation in fluid conditions. The isotopically uniform colloform mantles are formed by pyrite crystallites separated by low-angle boundaries and are characterized by unusual decoupling of Au and As. Mantle formation is attributed to rapid disequilibrium precipitation from a metal-rich FeS2-supersaturated fluid. Incorporation of Au into the pyrite mantles was facilitated by abundant lattice defects produced by rapid nucleation. Gold-As–poor pyrite rims were deposited from an evolved ore fluid or other metal-depleted fluids. These results show that chemical variations recorded by fine layering within minerals can provide valuable insights into disequilibrium mass transfer and ore formation. The decoupling between Au and As in pyrite mantles indicates that As is not always a reliable proxy for Au enrichment in rapidly crystallized porous pyrite.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document