Dominant aquatic species and their hydrological niches in freshwater ecosystems in a developing city

2019 ◽  
Vol 70 (5) ◽  
pp. 615
Author(s):  
S. Yang ◽  
T. Pan ◽  
X. Wang ◽  
Y. Sun ◽  
Y. Zhang ◽  
...  

Maintenance of appropriate hydrological niches is crucial to aquatic organisms. This study identified keystone species using the Ecopath with Ecosim food web model for hydrological niche analysis in Jinan City, the first pilot city of the Water Ecological Civilisation Project in China. The niche breadth of keystone species was analysed using Levins’ breadth model. Results revealed 35 keystone species in the aquatic ecosystems of Jinan City, including 5 phytoplankton, 7 zooplankton, 9 zoobenthos and 14 fish species. Streamflow was the most important hydrological factor affecting the phytoplankton, zooplankton, zoobenthos and fish communities in the study area, and excess variation in streamflow had an adverse effect on the normal evolution of the four biotic communities. We found that: (1) higher trophic levels in the food web contained more keystone species in the corresponding community; (2) carbon is an important element constraining the food web structure, and the magnitude of its effect on energy flow determines the degree of importance of the keystone species in the food web; and (3) changes to the survey season and at the spatiotemporal scale will have strong effects on the results of hydrological niche analysis and, to reduce these effects, it will be important to lengthen the spatial and temporal scales to cover both dry and flood seasons in the future. These results may provide an important basis for decision making regarding ecological scheduling and remediation of rivers in the study area, and potentially regions worldwide, thus facilitating aquatic ecological remediation and sustainable water resource management.

2020 ◽  
Vol 42 (4) ◽  
pp. 411-424
Author(s):  
Kriste Makareviciute-Fichtner ◽  
Birte Matthiessen ◽  
Heike K Lotze ◽  
Ulrich Sommer

Abstract Many coastal oceans experience not only increased loads of nutrients but also changes in the stoichiometry of nutrient supply. Excess supply of nitrogen and stable or decreased supply of silicon lower silicon to nitrogen (Si:N) ratios, which may decrease diatom proportion in phytoplankton. To examine how Si:N ratios affect plankton community composition and food web structure, we performed a mesocosm experiment where we manipulated Si:N ratios and copepod abundance in a Baltic Sea plankton community. In high Si:N treatments, diatoms dominated. Some of them were likely spared from grazing unexpectedly resulting in higher diatom biomass under high copepod grazing. With declining Si:N ratios, dinoflagellates became more abundant under low and picoplankton under high copepod grazing. This altered plankton food web structure: under high Si:N ratios, edible diatoms were directly accessible food for copepods, while under low Si:N ratios, microzooplankton and phago-mixotrophs (mixoplankton) were a more important food source for mesograzers. The response of copepods to changes in the phytoplankton community was complex and copepod density-dependent. We suggest that declining Si:N ratios favor microzoo- and mixoplankton leading to increased complexity of planktonic food webs. Consequences on higher trophic levels will, however, likely be moderated by edibility, nutritional value or toxicity of dominant phytoplankton species.


2018 ◽  
Author(s):  
Barbara Oleszczuk ◽  
Katarzyna Grzelak ◽  
Monika Kędra

Arctic marine ecosystems are currently facing sea ice decrease. Changes in the sea ice cover will influence the Organic Matter (OM) fluxes to the bottom and thus benthic communities. We aimed to examine meio- and macrobenthic biodiversity and community structure, and food web, with use of stable isotopes of carbon (δ13C) and nitrogen (δ15N), in relation to depth, sea ice type, and bloom stage. Benthic samples were collected in Svalbard area during spring time in 2015 and 2016 along with samples of particulate and sediment OM. Svalbard fjords, Storfjorden, Barents Sea shelf, continental slope, and Nansen Basin were characterized by different environmental settings including various sea ice conditions, bloom stage, sediment OM and particulate OM in bottom water. The highest biodiversity and biomass were found at the shelf and slope stations where intensive bloom was observed and was related to higher concentrations of fresh, high-quality OM. Low benthic infaunal diversity, abundance, and biomass were noted in fjords and deep stations where quality and quantity of OM was markedly lower. Deposit feeders were the only feeding guild sampled in the deep stations while at other stations 3-4 trophic levels were found.


2006 ◽  
Vol 4 (2) ◽  
pp. 279-284 ◽  
Author(s):  
Alexandre M. Garcia ◽  
David J. Hoeinghaus ◽  
João P. Vieira ◽  
Kirk O. Winemiller ◽  
David M. L. Motta Marques ◽  
...  

Taim Ecological Reserve is located within the Taim Hydrological System and was created to protect a heterogeneous and productive landscape harboring exceptional biological diversity in southern Brazil. Using stable isotope ratio analyses of carbon (delta13C) and nitrogen (delta15N), we provide a preliminary description of the food web structure, including estimates of production sources supporting fish populations and vertical trophic structure, within a representative lake of this system. A total of 21 organisms (5 macrophytes, 3 mollusks and 13 adult fishes) representing 16 species were collected for isotope analysis. Fishes had delta13C values ranging from -24.30º/oo to -28.31º/oo , showing concordance with the range of values observed for macrophytes (-25.49 to -27.10º/oo), and suggesting that these plants could be a major carbon source supporting these fishes. delta13C signatures of Corbicula (-30.81º/oo) and Pomacea (-24.26º/oo) indirectly suggest that phytoplankton and benthic algae could be alternative carbon sources for some consumers. Nitrogen isotope ratios indicated approximately three consumer trophic levels. The pearl cichlid Geophagus brasiliensis was a primary consumer. Two catfishes (Trachelyopterus lucenai and Loricariichthys anus) were secondary consumers. Two congeneric pike cichclids (Crenicichla lepidota and C. punctata), a catfish (Pimelodus maculatus) and the characids Astyanax fasciatus and Oligosarcus robustus were tertiary consumers. Further studies including additional primary producers and consumers and greater sample numbers should be conducted to provide a more complete and detailed description of food web structure and dynamics within the reserve.


2003 ◽  
Vol 11 (3) ◽  
pp. 141-160 ◽  
Author(s):  
Sarah B Gewurtz ◽  
Miriam L Diamond

The bioaccumulation of organic contaminants in the Lake Erie food web is reviewed in context of the numerous changes experienced by the system. In the late 1960s, internal lake processes, related to the eutrophic status of the lake, minimized contaminant bioaccumulation despite high contaminant loadings. From the 1970s to 1980s contaminant concentrations decreased at different rates in many species of different trophic levels, coincident with decreased loadings to the lake. Since the early 1980s contaminant concentrations in biota have not changed consistently. Several factors have been proposed to account for these patterns, including reduced nutrient loadings and productivity, and the invasion of several exotic species such as zebra mussels. These factors have altered the food web structure and the internal distribution of contaminants in the lake. Emerging and continuing issues, such as climate change, invasions of additional exotic species, new chemical contaminants of concern, and algal toxins will likely impact contaminant dynamics in the future.Key words: Lake Erie, bioaccumulative contaminants, food web.


2014 ◽  
Author(s):  
Eric Hertz ◽  
James Robinson ◽  
Marc Trudel ◽  
Asit Mazumder ◽  
Julia K Baum

In aquatic systems, the ratio of predator mass to prey mass (PPMR) is an important constraint on food web structure, and has been correlated with environmental stability. One common approach of estimating PPMR uses nitrogen stable isotopes (δ15N) as an indicator of trophic position, under the assumption that the discrimination between diet and tissue is constant with increasing diet δ15N (an additive approach). However, recent studies have shown that this assumption may not be valid, and that there is a negative trend between the δ15N of the diet and the discrimination value (a scaled approach). We estimated PPMR for a simulated food web using the traditional additive approach and improved scaled approach, before testing our predictions with isotope samples from a North Sea food web. Our simulations show that the additive approach gives incorrect estimates of PPMR, and these biases are reflected in North Sea PPMR estimates. The extent of the bias is dependent on the baseline δ15N and trophic level sampled, with the greatest differences for samples with low baseline δ15N sampled at lower trophic levels. The scaled approach allows for the comparison of PPMR across varying δ15N baselines and trophic levels, and will refine estimates of PPMR.


2014 ◽  
Vol 33 (3) ◽  
pp. 735-740 ◽  
Author(s):  
Kai Guo ◽  
Wen Zhao ◽  
Wenkuan Li ◽  
Yuansong Zhao ◽  
Peng Zhang ◽  
...  

2019 ◽  
Vol 76 (11) ◽  
pp. 1929-1939 ◽  
Author(s):  
Kate Prestie ◽  
Iain D. Phillips ◽  
Douglas P. Chivers ◽  
Timothy D. Jardine

Lake food web structure dictates the flow of energy and contaminants to top predators, and addition of invasive species can shift these flows. We examined trophic position (TP), proportional reliance on the littoral zone (Proplittoral), and mercury (Hg) concentrations across the life-span of two predatory fishes, walleye (Sander vitreus) and northern pike (Esox lucius), in lakes with and without invasive virile crayfish (Faxonius virilis). The littoral zone was the dominant foraging zone for both species regardless of size, accounting for 59% and 80% of the diet of walleye and pike, respectively. Both species increased in TP and Hg with body size, as did crayfish. Walleye in crayfish-present lakes had lower Proplittoral, TP, and Hg concentrations compared with non-present lakes, but trophic magnification of Hg through the food web was consistent across all six lakes. These findings underscore a strong role for the littoral zone in channeling energy and contaminants to higher trophic levels and how invasive species can occupy new habitats at low abundance while altering food web structure and contaminant bioaccumulation.


2016 ◽  
Vol 35 (4) ◽  
pp. 58-62 ◽  
Author(s):  
Kai Guo ◽  
Wen Zhao ◽  
Shan Wang ◽  
Baozhan Liu ◽  
Peng Zhang

2021 ◽  
Vol 8 ◽  
Author(s):  
Camille de la Vega ◽  
Claire Mahaffey ◽  
David J. Yurkowski ◽  
Louisa Norman ◽  
Elysia Simpson ◽  
...  

Warming of the Arctic has resulted in environmental and ecological changes, termed borealization, leading to the northward shift of temperate species. Borealization has occurred across all trophic levels, altering the structure of the food web. The onset and rate of borealization likely varies with latitude, depending on local warming and advection of warmer water into the Arctic. In order to assess latitudinal trends in food web structure in the Arctic, we analyzed stable nitrogen isotopes of specific amino acids alongside bulk stable carbon isotopes in ringed seal muscle tissue from the Canadian Arctic Archipelago (high-Arctic) and Southern Baffin Bay (mid-Arctic) from 1990 to 2016. Our results indicate a shift in food web structure in the high-Arctic that has occurred more recently when compared with the mid-Arctic. Specifically, over the past 25 years, the trophic position of ringed seals from the mid-Arctic was largely constant, whereas the trophic position of ringed seals decreased in the high-Arctic, reaching similar values observed in the mid-Arctic in 2015–2016. This suggests a potential shortening of the food chain length in the high-Arctic, possibly driven by changes in zooplankton communities feeding complexity in association with sea ice decline. This study identifies a temporal offset in the timing of borealization in the Canadian Arctic, resulting in different response of food webs to ecological changes, depending on latitude.


2010 ◽  
Vol 61 (1) ◽  
pp. 11 ◽  
Author(s):  
Brooke L. Sargeant ◽  
Evelyn E. Gaiser ◽  
Joel C. Trexler

Food-web structure can shape population dynamics and ecosystem functioning and stability. We investigated the structure of a food-web fragment consisting of dominant intermediate consumers (fishes and crayfishes) in the Florida Everglades, using stable isotope analysis to quantify trophic diversity along gradients of primary production (periphyton), disturbance (marsh drying) and intermediate-consumer density (a possible indicator of competition). We predicted that trophic diversity would increase with resource availability and decrease after disturbance, and that competition could result in greater trophic diversity by favouring resource partitioning. Total trophic diversity, measured by niche area, decreased with periphyton biomass and an ordination axis representing several bluegreen algae species. Consumers’ basal resource diversity, estimated by δ13C values, was similarly related to algal community structure. The range of trophic levels (δ15N range) increased with time since the most recent drying and reflooding event, but decreased with intermediate-consumer density, and was positively related to the ordination axis reflecting increases in green algae and decreases in filamentous bluegreen algae. Our findings suggest that algal quality, independent of quantity, influences food-web structure and demonstrate an indirect role of nutrient enrichment mediated by its effects on periphyton palatability and biomass. These results reveal potential mechanisms for anthropogenic effects on Everglades communities.


Sign in / Sign up

Export Citation Format

Share Document