Carbon and nitrogen budgets of two Ascidians and their symbiont, Prochloron, in a tropical seagrass meadow

1993 ◽  
Vol 44 (1) ◽  
pp. 173 ◽  
Author(s):  
I Koike ◽  
M Yamamuro ◽  
PC Pollard

Two species of ascidian, Didemnum molle Herdman and Lissoclinum voeltzkowi Michaelsen, were collected from a Fijian seagrass meadow. The primary production of their symbiont (Prochloron), the inorganic nitrogen metabolism and the filtration rate were measured to assess the nutritional coupling between the symbiont and the host animal. The loss of organic carbon due to the respiration of D. molle (1.1 �g at. C (mg dry wt)-1 day-1) was greater than that supplied through photosynthesis of the Prochloron (0.69 �g at. C (mg dry wt)-1 day,-1). The carbon supplied through filter-feeding appeared to supplement the ascidian's carbon budget. In contrast, organic carbon from the Prochloron of L. voeltzkowi appeared to meet the colony's respiration needs. The nitrogen budgets of both ascidian colonies were estimated from their respiration rates, the nitrogen requirement of the Prochloron, and the uptake of inorganic nitrogen and particulate organic nitrogen uptake from the water column. The nitrogen incorporated from the surrounding environment could contribute to the net nitrogen gain of the colony. However, our estimate of the nitrogen needed by the Prochloron was much greater than that which could be supplied externally. The amount of nitrogen released by the ascidians was also greater than that which could be supplied externally. This suggests that nitrogen is efficiently recycled within the symbiotic Prochloron-ascidian relationship.

2021 ◽  
Author(s):  
Julia Wukovits ◽  
Nicolaas Glock ◽  
Johanna Nachbagauer ◽  
Petra Heinz ◽  
Wolfgang Wanek ◽  
...  

<p>Benthic foraminifera are highly abundant, ubiquitous marine protists, with many species feeding on microalgae or phytodetritus. Knowledge about carbon and nitrogen budgets and metabolic activities of benthic foraminifera can help to increase our understanding about their ecology and their role in aquatic biogeochemistry at the sediment-water interface. This can further increase their application as proxies for environmental changes. Shifts in the benthic foraminiferal communities of the Swedish Gullmars Fjord document the shift from well oxygenated bottom waters to seasonal hypoxia at its deepest location the Alsbäck Deep (125 m), during the last century.</p><p>So far there are only investigations available relating foraminiferal community composition with increased primary productivity and resulting hypoxia in this Fjord. In contrast, studies about the species-specific feeding ecology or food derived foraminiferal carbon and nitrogen fluxes are scarce.</p><p>Therefore, laboratory feeding experiments and respiration rate measurements were carried out with <em>Bulimina marginata</em>, <em>Cassidulina laevigata</em> and <em>Globobulima turgida</em>, abundant foraminifera in such environments, collected in August 2017.</p><p>Experiments were conducted to evaluate the carbon and nitrogen intake and turnover of dual (<sup>13</sup>C and <sup>15</sup>N) isotope labelled <em>Phaeodactylum tricornutum</em> detritus; detritus of a common diatom in the Gullmar Fjord. For the feeding experiments, foraminifera were incubated at 9.1°C in the dark, in sterile filtered seawater at ambient oxygen concentrations. The foraminifera were fed for a period of 24 hours and subsequently incubated without food for another 24 hours. After each incubation cycle, foraminiferal respiration rates were measured. The individuals were analyzed via Elemental Analyzer-Isotope Ratio Mass Spectroscopy to evaluate <sup>13</sup>C/<sup>12</sup>C and <sup>15</sup>N/<sup>14</sup>N ratios and their bulk content of organic carbon and nitrogen.</p><p>Additionally, we present carbon and nitrogen to volume ratios for the foraminifera <em>B. marginata</em>, <em>C. laevigata</em>, <em>G. turgida</em>, <em>G. auriculata</em> and <em>Nonionella turgida</em>, as derived from elemental analysis and light microscopy imaging.</p><p>The results show, that <em>B. marginata</em>, an opportunistic species associated with high fluxes of organic matter, had the highest rate of specific carbon and nitrogen intake and turnover. <em>Cassidulina laevigata</em>, a species that co-occurs with fresh phytodetritus and does not tolerate very low oxygen concentrations, showed lower carbon and nitrogen intake rates. <em>Globobulima turgida</em>, a denitrifying infaunal species that thrives under hypoxia, showed the lowest specific carbon and nitrogen intake and turnover rates. Respiration rates of all species did not depend on incubation with or without a food source. The foraminifera showed similar carbon and nitrogen densities per test volume across all species.</p><p>Overall this study helps to improve the knowledge on the nutritional ecology of the investigated species, demonstrating the close relation between feeding/metabolic rates and their environmental niche and highlighting the need to introduce foraminiferal data in future marine carbon and nitrogen flux models.</p>


1983 ◽  
Vol 34 (6) ◽  
pp. 835 ◽  
Author(s):  
CJ Crossland ◽  
DJ Barnes

Concentrations of dissolved nutrients and organic particulates were measured in seawater flowing across the windward and leeward reef flats of the lagoonal reef complex at Lizard Island. Measurements were made during the day, at night, and at various stages of the tide over a period of several weeks. The reef complex, as a whole, did not consume or export statistically significant amounts of inorganic nitrogen, phosphorus, silicate, organic nitrogen or organic carbon. Depletion or elevation of nutrient levels in one benthic zone appeared to be balanced by production or consumption in downstream zones.


2007 ◽  
Vol 4 (4) ◽  
pp. 433-454 ◽  
Author(s):  
M. Schartau ◽  
A. Engel ◽  
J. Schröter ◽  
S. Thoms ◽  
C. Völker ◽  
...  

Abstract. During phytoplankton growth a fraction of dissolved inorganic carbon (DIC) assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC), which can be transformed into extracellular particulate organic carbon (POC). A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC) that form from dissolved polysaccharides (PCHO). The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN), called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N) ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON) remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM). The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is applicable for large-scale biogeochemical simulations.


Author(s):  
Thomas S. Bianchi ◽  
Elizabeth A. Canuel

This chapter discusses proteins, which make up approximately 50% of organic matter and contain about 85% of the organic nitrogen in marine organisms. Peptides and proteins comprise an important fraction of the particulate organic carbon (13–37%) and particulate organic nitrogen (30–81%), as well as dissolved organic nitrogen (5–20%) and dissolved organic carbon (3–4%) in oceanic and coastal waters. In sediments, proteins account for approximately 7 to 25% of organic carbon and an estimated 30 to 90% of total nitrogen. Amino acids are the basic building blocks of proteins. This class of compounds is essential to all organisms and represents one of the most important components in the organic nitrogen cycle. Amino acids represent one of the most labile pools of organic carbon and nitrogen.


1949 ◽  
Vol 39 (3) ◽  
pp. 280-282 ◽  
Author(s):  
J. M. Bremner

A study has been made of the extraction of organic carbon and nitrogen from soil by various inorganic reagents. The results show that the organic carbon and nitrogen of soil are so intimately associated that, under the influence of any one of the reagents tested, the organic carbon is dissolved only along with, and in proportion to, the organic nitrogen. The relative proportions of carbon and nitrogen extracted vary, however, with both the soil and the extractant.


1981 ◽  
Vol 32 (2) ◽  
pp. 245 ◽  
Author(s):  
DJW Moriarty ◽  
MC Barclay

The food of seven species of penaeid prawns from the Gulf of Carpentaria consists predominantly of Foraminifera, small molluscs, crustaceans and polychaetes. Measurements of organic and inorganic carbon, organic nitrogen and bacterial biomass were made. Foregut contents of adult prawns contained between 72 and 223 mg organic carbon/g dry wt. Protein constituted between 43 and 64% of the organic matter. Approximate assimilation efficiencies of food in prawns caught in the gulf, determined for four species, varied from 48 to 77% of organic carbon and from 42 to 77% of organic nitrogen. The food of juvenile Penaeus merguiensis was examined for two growing seasons. In the 1976-1977 season the foregut contents contained a mean of 41 mg organic nitrogen /g dry wt and 181 mg organic carbon /g dry wt. In the 1977-1978 season, significantly lower proportions of organic nitrogen and carbon were eaten, viz, 21 mg organic nitrogenlg dry wt and 101 mg organic carbon /g dry wt. Improved assay procedures for muramic acid have shown that bacteria are less important in the food of prawns than previously reported. Bacteria constituted less than 2% of the organic matter in the adults of all species, but in many juvenile P. merguiensis bacteria were more important, constituting up to 14% of organic matter.


1982 ◽  
Vol 33 (2) ◽  
pp. 255 ◽  
Author(s):  
DJW Moriarty

Organic carbon and nitrogen and bacterial biomass were measured in the sediments and gut contents of H. atra and S. chloronotuson the Great Barrier Reef. Organic carbon averaged from 3.4 to 4.7 mg g-1, organic nitrogen from 0.20 to 0.31 mg g-1 and muramic acid from 1.4 to 3.3�g g-1 dry weight of surface sandy sediments. Bacterial biomass, determined by muramic acid measurements, averaged 3-8% of organic carbon in the sediments; blue-green algae accounted for 3-7% of muramic acid. Significantly higher values of organic carbon and nitrogen and muramic acid were found in foregut contents of the holothurians, indicating selective feeding on organically rich components of the sediment. Carbon values were 16-34% higher in the foregut than in the sediment. nitrogen values 35-111% higher and muramic acid values 33-300% higher. These values indicate that bacteria and nitrogenous components of the organic matter were selectively eaten. Values for organic carbon and nitrogen and muramic acid were generally lower in the hindgut than in the foregut, due to digestion and assimilation. Assimilation efficiencies averaged 30% for organic carbon, 40% for organic nitrogen and 30-40% for muramic acid (bacteria). Detritus (non-living matter) probably constituted 60-80% of the organic matter in the sediment and thus the food of the holothurians.


1981 ◽  
Vol 27 (8) ◽  
pp. 859-863 ◽  
Author(s):  
Maichael J. Barder ◽  
Don L. Crawford

Effects of nitrogen source and concentration and organic carbon cosubstrates on lignin and cellulose degradation by Streptomyces badius strain 252 were examined using 14C-labeled substrates prepared from Pseudotsuga menziesii twigs. As compared with white-rot fungi, which do not degrade lignin in the absence of a readily metabolizable carbon cosubstrate, degradation of a milled-wood lignin occurred in a minimal medium, although degradation by S. badius was greatly enhanced when organic nitrogen and an organic carbon cosubstrate were added to the medium. Lignin degradation was greatest in the presence of high levels of organic nitrogen. Further enhancement of lignin and cellulose degradation occurred in a medium containing organic nitrogen supplemented with low levels of NO3−. The specific effects of inorganic nitrogen on lignocellulose degradation by S. badius in an otherwise optimal medium included both enhancement and inhibition of lignin or cellulose degradation depending on the source and concentration of inorganic nitrogen used. These effects were distinctly different from those observed with white-rot fungi and were shown to be specific ion effects on polymer degradation and not simply a salt concentration effect on cellular growth.


2013 ◽  
Vol 64 (4) ◽  
pp. 130-134 ◽  
Author(s):  
Jerzy Jonczak

Abstract The aim of the study was to compare the content of carbon and nitrogen fractions in fresh and dried samples of peat. The samples were extracted in 0.25 mol KCl·dm.-3, 0.25 mol H2SO4·dm.-3 and 2.5 mol H2SO4·dm.-3. Based on the extractions and analysis of total organic carbon (TOC) and total nitrogen (TN) following fractions of carbon and nitrogen were isolated: nonhydrolyzable carbon (NHC) and nitrogen (NHN), hardly hydrolyzable carbon (HHC) and nitrogen (HHN), easy hydrolyzable carbon (EHC) and nitrogen (EHN), dissolved organic nitrogen (DON), and its ammonium (NH4.-N) and nitrate (NO3.-N) form. Large differences between fresh and dried samples were observed in the content of some analyzed fractions . especially NO3.-N, NH4.-N, DON and HHC. 1.6.3.5 times higher concentrations of NO3.-N were observed in dry samples in comparison with fresh. In dried samples were also observed higher concentrations of NH4.-N and DON. In general lower concentrations of EHN, NHN, HHC and higher of HHN and EHC were observed in dried samples in comparison to fresh. Higher content of mineral nitrogen, as well as DON and DOC in dried samples, is probably an effect of mineralization of carbon and nitrogen compounds during initial stage of drying. The obtained data suggest, that the content of NO3.-N, NH4.-N, DON and EHC analyzed in dried samples of peat is overestimated. Extractions of the fractions from organic samples should be done based on fresh samples, just after sampling


Sign in / Sign up

Export Citation Format

Share Document