scholarly journals The Transition from Diffuse to Dense Clouds

1992 ◽  
Vol 45 (4) ◽  
pp. 543 ◽  
Author(s):  
Theodore P Snow

Optical and ultraviolet spectroscopy have shown that diffuse interstellar clouds can have a wide range of properties, with especially large variations in the nature of the UV extinction curve and the abundances of molecular species. More subtle variations are found in the properties of the diffuse interstellar bands, and there have been suggestions that elemental depletions from the gas phase into solid dust particles also vary significantly. It is the purpose of this paper to review studies of the relatively diffuse interstellar clouds where these variations occur, and to explore the possible relationship between dust properties, as indicated by UV extinction, and other cloud characteristics. The focus is on relatively dense diffuse clouds, which may be viewed as transitional or intermediate between ordinary diffuse clouds and dark clouds, because in principle the greatest amount of information is available for the intermediate clouds, and because they serve as indicators of processes that may occur in the denser molecular clouds. The paper begins with a brief review of some results from the literature on transitional or intermediate clouds, and then provides a summary of some recent results on one particular cloud, in front of the star BD+31 �643, in the small open cluster IC348, which is part of the Perseus II complex of dark clouds and OB associations. The paper concludes with some tentative speculations about the possible status of the transitional clouds, along with a brief mention of the impact of upcoming instrumental developments on research in this area.

1980 ◽  
Vol 5 ◽  
pp. 293-300 ◽  
Author(s):  
M. Jura

Interstellar clouds are concentrations of cold (T ≲ 100 K) neutral gas (cf. Spitzer 1978) which are immersed within an intercloud medium. It is worthwhile to distinguish between diffuse clouds (roughly those with E[B-V] ≳ 0.5) and dark clouds (those with E[B-V] ≳ 0.5). This distinction is useful in the sense that diffuse clouds are relatively warm (T ∼ 100 K), they are composed mostly of atomic species except for hydrogen which can be appreciably molecular, and they are dynamically controlled by their interaction with the intercloud medium. Dark clouds are relatively cold (T ∼ 10 K), they contain a rich variety of molecules, and self-gravity is important in their evolution. Because the interstellar extinction is a rapid function of wavelength, most ultraviolet observations have been of diffuse clouds. The IUE satellite is sufficiently powerful that observations of some dark clouds are possible, and an important area of future research will be to delineate more quantitatively the similarities and differences between diffuse clouds and dark clouds.With ultraviolet observations, considerable progress has been made in understanding the physical characteristics of clouds including determinations of their densities, temperatures, chemical compositions and dynamics (cf. Spitzer and Jenkins 1976). Because particular progress has been made on understanding the abundances within diffuse clouds and because of the limitations of space, we restrict this review to a discussion of abundances within diffuse clouds. These abundance measurements provide a set of fundamental astrophysical data.


1980 ◽  
Vol 87 ◽  
pp. 273-280
Author(s):  
A. Dalgarno

A description is given of the processes of molecular formation and destruction in diffuse interstellar clouds and detailed models of the clouds lying towards ζ Ophiuchi, ζ Persei and o Persei are used to assess the validity of gas phase chemistry. Modifications that may arise from shock-heated regions are discussed.


1989 ◽  
Vol 120 ◽  
pp. 32-37
Author(s):  
R. Gredel ◽  
S. Lepp ◽  
A. Dalgarno ◽  
E. Herbst

AbstractUltraviolet photons are created in the interior of dense interstellar clouds by the impact excitation of molecular hydrogen by secondary electrons generated by cosmic ray ionization. The resulting photodissociation and photoionization rates of a wide range of interstellar molecules are calculated. The effects on the equilibrium chemical composition of dense clouds are briefly discussed.


2019 ◽  
Vol 489 (1) ◽  
pp. 708-713 ◽  
Author(s):  
Kaijun Li ◽  
Aigen Li ◽  
F Y Xiang

ABSTRACT The carriers of the still (mostly) unidentified diffuse interstellar bands (DIBs) have been a long-standing mystery ever since their first discovery exactly 100 yr ago. In recent years, the ubiquitous detection of a large number of DIBs in a wide range of Galactic and extragalactic environments has led to renewed interest in connecting the occurrence and properties of DIBs to the physical and chemical conditions of the interstellar clouds, with particular attention paid to whether the DIB strength is related to the shape of the interstellar extinction curve. To shed light on the nature and origin of the DIB carriers, we investigate the relation between the DIB strength and RV, the total-to-selective extinction ratio, which characterizes how the extinction varies with wavelength (i.e. the shape of the extinction curve). We find that the DIB strength and RV are not related if we represent the strength of a DIB by its reddening-normalized equivalent width (EW), in contrast to the earlier finding of an anticorrelation in which the DIB strength is measured by the extinction-normalized EW. This raises a fundamental question about the appropriate normalization for the DIB EW. We argue that the hydrogen column density is a more appropriate normalization than extinction and reddening.


1980 ◽  
Vol 87 ◽  
pp. 81-82
Author(s):  
Alwyn Wootten ◽  
G. P. Bozyan ◽  
D. B. Garrett ◽  
R. B. Loren ◽  
R. L. Snell ◽  
...  

A survey for the molecules C2H and HC3N in a variety of interstellar clouds has been completed. Both molecules are very widespread, in cold dark clouds as well as in hot clouds. C2H emission has been mapped in L1534. In cold clouds the fractional abundance X(C2H) is found to be 2-6×10−9. The ratio of abundances X(C2H)/X(HC3N) falls in the range 6-10, consistent with some gas-phase reaction schemes for these molecules.


2021 ◽  
Vol 21 (19) ◽  
pp. 14631-14648
Author(s):  
Soleil E. Worthy ◽  
Anand Kumar ◽  
Yu Xi ◽  
Jingwei Yun ◽  
Jessie Chen ◽  
...  

Abstract. A wide range of materials including mineral dust, soil dust, and bioaerosols have been shown to act as ice nuclei in the atmosphere. During atmospheric transport, these materials can become coated with inorganic and organic solutes which may impact their ability to nucleate ice. While a number of studies have investigated the impact of solutes at low concentrations on ice nucleation by mineral dusts, very few studies have examined their impact on non-mineral dust ice nuclei. We studied the effect of dilute (NH4)2SO4 solutions (0.05 M) on immersion freezing of a variety of non-mineral dust ice-nucleating substances (INSs) including bacteria, fungi, sea ice diatom exudates, sea surface microlayer substances, and humic substances using the droplet-freezing technique. We also studied the effect of (NH4)2SO4 solutions (0.05 M) on the immersion freezing of several types of mineral dust particles for comparison purposes. (NH4)2SO4 had no effect on the median freezing temperature (ΔT50) of 9 of the 10 non-mineral dust materials tested. There was a small but statistically significant decrease in ΔT50 (−0.43 ± 0.19 ∘C) for the bacteria Xanthomonas campestris in the presence of (NH4)2SO4 compared to pure water. Conversely, (NH4)2SO4 increased the median freezing temperature of four different mineral dusts (potassium-rich feldspar, Arizona Test Dust, kaolinite, montmorillonite) by 3 to 9 ∘C and increased the ice nucleation active site density per gram of material (nm(T)) by a factor of ∼ 10 to ∼ 30. This significant difference in the response of mineral dust and non-mineral dust ice-nucleating substances when exposed to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms. This difference suggests that the relative importance of mineral dust to non-mineral dust particles for ice nucleation in mixed-phase clouds could potentially increase as these particles become coated with (NH4)2SO4 in the atmosphere. This difference also suggests that the addition of (NH4)2SO4 (0.05 M) to atmospheric samples of unknown composition could potentially be used as an indicator or assay for the presence of mineral dust ice nuclei, although additional studies are still needed as a function of INS concentration to confirm the same trends are observed for different INS concentrations than those used here. A comparison with results in the literature does suggest that our results may be applicable to a range of mineral dust and non-mineral dust INS concentrations.


Author(s):  
Eric Herbst

The chemistry that occurs in interstellar clouds consists of both gas-phase processes and reactions on the surfaces of dust grains, the latter particularly on and in water-dominated ice mantles in cold clouds. Some of these processes, especially at low temperature, are very unusual by terrestrial standards. For example, in the gas-phase, two-body association reactions form a metastable species known as a complex, which is then stabilized by the emission of radiation under low-density conditions, especially at low temperatures. In the solid phase, it has been thought that the major process for surface reactions is diffusive in nature, occurring when two species undergoing random walks collide with each other on a surface that has both potential wells and intermediate barriers. There is experimental evidence for this process, although very few rates at low interstellar temperatures are well measured. Moreover, since dust particles are discrete, modeling has to take account that reactant pairs are on the same grain, a problem that can be treated using stochastic approaches. In addition, it has been shown more recently that surface reactions can occur more rapidly if they undergo any of a number of non-diffusive processes including so-called three-body mechanisms. There is some experimental support for this hypothesis. These and other unusual gaseous and solid-state processes will be discussed from the theoretical and experimental points of view, and their possible role in the synthesis of organic molecules in interstellar clouds explained. In addition, their historical development will be reviewed.


2021 ◽  
Author(s):  
Soleil E. Worthy ◽  
Anand Kumar ◽  
Yu Xi ◽  
Jingwei Yun ◽  
Jessie Chen ◽  
...  

Abstract. A wide range of materials including mineral dust, soil dust, and bioaerosols have been shown to act as ice nuclei in the atmosphere. During atmospheric transport, these materials can become coated with inorganic and organic solutes which may impact their ability to nucleate ice. While a number of studies have investigated the impact of solutes at low concentrations on ice nucleation by mineral dusts, very few studies have examined their impact on non-mineral dust ice nuclei. We studied the effect of dilute (NH4)2SO4 solutions on immersion freezing of a variety of non-mineral dust ice nucleating substances including bacteria, fungi, sea ice diatom exudates, sea surface microlayer, and humic substances using the droplet freezing technique. We also studied the effect of (NH4)2SO4 on immersion freezing of mineral dust particles for comparison purposes. (NH4)2SO4 had no effect on the median freezing temperature of nine of the ten tested non-mineral dust materials. There was a small but statistically significant decrease in the median freezing temperature of the bacteria X. campestris (change in median freezing temperature ∆T_50 = -0.43 ± 0.19 °C) in the presence of (NH4)2SO4 compared to pure water. Conversely, (NH4)2SO4 increased the median freezing temperature of four different mineral dusts (Potassium-rich feldspar, Arizona Test Dust, Kaolinite, Montmorillonite) by 3 °C to 8 °C. This significant difference in the response of mineral dust and non-mineral dust ice nucleating substances when exposed to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms. This difference suggests that the relative importance of mineral dust to non-mineral dust particles for ice nucleation in mixed-phase clouds could increase as these particles become coated with ammonium sulfate in the atmosphere. This difference also suggests that the addition of (NH4)2SO4 to atmospheric samples of unknown composition could be used as an indicator or assay for the presence of mineral dust ice nuclei.


2013 ◽  
Vol 9 (S297) ◽  
pp. 23-33 ◽  
Author(s):  
J. Krełowski

AbstractThe term “families of diffuse bands” (DIBs) appeared in 1986/87 when my collaborators: Gordon A.H. Walker, Bengt E. Westerlund and I found that the strength ratio of the major DIBs 5780 and 5797 is heavily variable. We proved that at the same E(B-V) the DIB intensities may vary by as much as a factor of three or more. A similar result was published by Karl Josafatsson and Ted Snow soon after. A decade later, we proved (with Chris Sneden) that certain DIB strength ratios seem to be related to intensities of the known features of simple molecular species; this led to the introduction of the so called σ and ζ type interstellar clouds. The former are characterized by very weak molecular features (but broad DIBs – very strong) while the latter by rather strong bands of simple radicals and weak broad DIBs. Currently we face a bunch of questions: are the DIB intensities related to those of certain molecular species, e.g. C2 as suggested by Lew Hobbs' and Ted Snow's group? Do the DIB profiles, found to be complex by Peter Sarre, depend on e.g. the rotational temperatures of simple, linear carbon species? Do the DIB profiles depend on the irradiation of interstellar clouds by nearby stars? The relative DIB strengths as well as those of the simple radicals seem to be related to the shapes of interstellar extinction curves. We thus face three players in the interstellar translucent clouds: dust particles, simple radicals and the DIB carriers. Apparently, their mutual relations depend on local physical parameters of intervening clouds; these relations are not clear yet.


2020 ◽  
Vol 637 ◽  
pp. A39
Author(s):  
D. Navarro-Almaida ◽  
R. Le Gal ◽  
A. Fuente ◽  
P. Rivière-Marichalar ◽  
V. Wakelam ◽  
...  

Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when nH > 2 × 104. This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5−10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.


Sign in / Sign up

Export Citation Format

Share Document