Divergence in plant water-use strategies in semiarid woody species

2017 ◽  
Vol 44 (11) ◽  
pp. 1134 ◽  
Author(s):  
Rachael H. Nolan ◽  
Kendal A. Fairweather ◽  
Tonantzin Tarin ◽  
Nadia S. Santini ◽  
James Cleverly ◽  
...  

Partitioning of water resources amongst plant species within a single climate envelope is possible if the species differ in key hydraulic traits. We examined 11 bivariate trait relationships across nine woody species found in the Ti-Tree basin of central Australia. We found that species with limited access to soil moisture, evidenced by low pre-dawn leaf water potential, displayed anisohydric behaviour (e.g. large seasonal fluctuations in minimum leaf water potential), had greater sapwood density and lower osmotic potential at full turgor. Osmotic potential at full turgor was positively correlated with the leaf water potential at turgor loss, which was, in turn, positively correlated with the water potential at incipient stomatal closure. We also observed divergent behaviour in two species of Mulga, a complex of closely related Acacia species which range from tall shrubs to low trees and dominate large areas of arid and semiarid Australia. These Mulga species had much lower minimum leaf water potentials and lower specific leaf area compared with the other seven species. Finally, one species, Hakea macrocarpa A.Cunn ex.R.Br., had traits that may allow it to tolerate seasonal dryness (through possession of small specific leaf area and cavitation resistant xylem) despite exhibiting cellular water relations that were similar to groundwater-dependent species. We conclude that traits related to water transport and leaf water status differ across species that experience differences in soil water availability and that this enables a diversity of species to exist in this low rainfall environment.

1989 ◽  
Vol 16 (5) ◽  
pp. 429 ◽  
Author(s):  
IE Henson ◽  
CR Jensen ◽  
NC Turner

Changes in the content of endogenous abscisic acid (ABA) were followed in glasshouse experiments during stomatal closure induced by drought in leaves of lupin (Lupinus cosentinii Guss. cv. Eregulla) and wheat (Triticum aestivum L. cvv. Gamenya and Warigal), species which differ in stomatal sensitivity to changes in leaf water potential. Increases in bulk leaf ABA concentration were closely correlated with decreases in leaf conductance in both species. In lupin, substantial increases in ABA and decreases in conductance occurred over a very narrow range of leaf water potential. ABA concentrations in wheat leaves were highly negatively correlated with bulk leaf turgor, but there was no significant relationship between ABA and turgor in lupin. However, ABA accumulated progressively in the leaves of both species as soil water content decreased. Stomatal closure in lupin could be induced by supplying exogenous ABA to detached leaves via the transpiration stream at concentrations of 10-4 to 10-2 mol m-3 of (+)-ABA. Abaxial stomata closed more readily than those on the adaxial surface in response to both drought and applied ABA. Stomatal response to ABA was not affected by the presence of the cytokinin zeatin, and zeatin by itself had no effect on conductance. When treatments designed to reduce endogenous cytokinin concentrations were imposed (prolonged leaf detachment or prior drought), stomatal response to low concentrations of ABA was enhanced. However, such treatments did not significantly change the stomatal response to high ABA concentrations, nor affect the stomatal conductance of leaves supplied with water alone. It is concluded that drought-induced stomatal closure could be mediated by ABA in both wheat and lupin, despite the initially small change in leaf water status in the latter species.


1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


HortScience ◽  
2006 ◽  
Vol 41 (2) ◽  
pp. 410-413 ◽  
Author(s):  
Toshio Shibuya ◽  
Ryoko Terakura ◽  
Yoshiaki Kitaya ◽  
Makoto Kiyota

Application of a low-relative-humidity treatment (LHT) to seedlings can reduce water stress on cuttings harvested from the seedlings, after the cuttings are planted. Effects of illumination during LHT and LHT duration on leaf water potential and leaf conductance in cucumber (Cucumis sativus L.) seedlings used as the model plant material and on growth of harvested cuttings were investigated to determine optimal LHT conditions. The seedlings received LHT for 12 or 24 h in a lighted or dark growth chamber at air temperatures of 28 to 31 °C and relative humidity of 12% to 25%. Cuttings including a foliage leaf and two cotyledons were harvested by cutting the hypocotyl of the seedlings immediately after the treatment, and then the cuttings were planted in vermiculite medium. Four days after planting, the total fresh weight of the cuttings from seedlings that had received LHT in the lighted chamber was 2.2 times that of cuttings from seedlings that had not received LHT, whereas the total fresh weight of those that had received LHT in the dark increased by 1.3 to 1.8 times. Significant effects of illumination during LHT were also observed in the transpiration rate and growth of the cuttings, harvested following the treatment, after they were planted. By varying LHT duration, it was also found that leaf water potential and leaf conductance of the seedlings decreased as LHT duration increased up to 18 h. Thus, illumination during LHT increased the growth of cuttings taken following the treatment, and optimal treatment duration of around 18 h was estimated from the seedlings' leaf conductance and leaf water potential.


1978 ◽  
Vol 5 (5) ◽  
pp. 597 ◽  
Author(s):  
NC Turner ◽  
JE Begg ◽  
ML Tonnet

The soil and plant water status of irrigated and unirrigated sorghum [Sorghum bicolor (L.) Moench cv. TX610] and sunflower (Helianthus annuus L. cv. Hysun 30) crops were compared on several days from the late vegetative to the early grain-filling stages of development. Additionally, the stems of plants from the irrigated and unirrigated plots of both species were cut near their base; this caused the plants to quickly dry until the stomata closed. The leaf water potential and leaf osmotic potential were measured when the stomatal resistance reached 6 s cm-� to give the water potential for stomatal closure and to provide osmotic potentials at equal turgor. Carbohydrate and potassium levels of leaves were also monitored. The mean daily minimum leaf water potentials in the irrigated sorghum and sunflower did not decrease below - 1 7 MPa and - 2.0 MPa, respectively, but decreased to - 2.1 MPa in the unirrigated sorghum and -2.6 MPa in the unirrigated sunflower. The osmotic potential at stomatal closure in the rapidly dried plants decreased with increasing leaf water deficit in both sunflower and sorghum: in both species the osmotic potential decreased approximately 0.6 MPa for each megapascal decrease in leaf water potential. The results indicate that both sorghum and sunflower adjusted osmotically in response to water deficits and that adjustment occurred at a rate of at least 0.1 MPa per day. The lowering of osmotic potential persisted less than 9 days after the relief of stress in both sunflower and sorghum. The soluble sugar concentration increased linearly in both sunflower and sorghum with osmotic adjustment: the rate of increase of soluble sugars was significantly greater in sunflower than sorghum. No changes in potassium concentration were observed during osmotic adjustment. The water potential at which the stomata closed varied from - 1.5 to -2.6 MPa in sorghum and - 1.7 to -2.7 MPa in sunflower: the water potential that induced stomatal closure decreased as the osmotic potential decreased. Stomatal closure occurred at a mean turgor of -0-5 MPa in both species: systematic error in the measurement of osmotic potential on frozen and thawed leaf tissue is considered the reason for the low turgor potentials at stomatal closure. The adaxial stomatal closed before the abaxial stomata in the sorghum and unirrigated sunflower but, since the leaf water potential initially fell rapidly and then became stable before the adaxial stomata closed, both the adaxial and abaxial stomata closed at the same leaf water potential.


2004 ◽  
Vol 16 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Carlos Henrique Britto de Assis Prado ◽  
Zhang Wenhui ◽  
Manuel Humberto Cardoza Rojas ◽  
Gustavo Maia Souza

Predawn leaf water potential (psipd) and morning values of leaf gas exchange, as net photosynthesis (A), stomatal conductance (gs), transpiration (E), and morning leaf water potential (psimn) were determined seasonally in 22 woody cerrado species growing under natural conditions. Despite the lower mean values of psipd in the dry season (-0.35 ± 0.23 MPa) compared to the wet season (-0.08 ± 0.03 MPa), the lowest psipd in the dry season (-0.90 ± 0.00 MPa) still showed a good nocturnal leaf water status recovery for all species studied through out the year. Mean gs values dropped 78 % in the dry season, when the vapor pressure of the air was 80% greater than in the wet season. This reduction in gs led to an average reduction of 33% in both A and E, enabling the maintainance of water use efficiency (WUE) during the dry season. Network connectance analysis detected a change in the relationship between leaf gas exchange and psimn in the dry season, mainly between gs-E and E-WUE. A slight global connectance value increase (7.25 %) suggested there was no severe water stress during the dry season. Multivariate analysis showed no link between seasonal response and species deciduousness, suggesting similar behavior in remaining leaves for most of the studied species concerning leaf gas exchange and psimn under natural drought.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongtian Luo ◽  
Che-Ling Ho ◽  
Brent R. Helliker ◽  
Eleni Katifori

Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.


1991 ◽  
Vol 18 (6) ◽  
pp. 661 ◽  
Author(s):  
J Lloyd ◽  
T Trochoulias ◽  
R Ensbey

Diurnal patterns of stomatal conductance (gs) and leaf water potential (Ψ1) were determined for leaves on irrigated and non-irrigated 5-year-old Macadamia integrifolia trees over a 4-month period from September to December 1989. An empirical model for stomatal conductance was developed for irrigated trees using relationships to photon irradiance (I), leaf temperature (T1) and vapour mole fraction difference (D). This model accounted for 69% of the variance in gs, and was not improved by the inclusion of Ψ1 as an independent variable. Fitted parameters led to the effective prediction of gs for untried combinations of environmental variables. By using a simple expression to link leaf water potential to transpiration rate (E), the model was extended to prediction of Ψ1 from measurements of I, T1 and D. Stornatal conductances were significantly lower on non-irrigated trees after a 2-month dry period. Lower stornatal conductances were not accompanied by more negative Ψ1 indicating that soil rather than leaf water status may control gs in macadamia trees under non-irrigated conditions.


1979 ◽  
Vol 15 (4) ◽  
pp. 377-383 ◽  
Author(s):  
M. V. K. Sivakumar ◽  
S. M. Virmani

SUMMARYThe pressure-chamber technique has been used for the first time to measure leaf-water potentials in chickpea under field conditions. Available soil-water contents at different depths for irrigated and non-irrigated crops are presented along with the diurnal variation in leaf-water status, to show that pressure-chamber measurements correspond closely with available soil water. Leaf-water potential has also shown differences in leaf-water status among different cultivars. The rapidity and ease with which measurements can be made in the field make the technique suitable for quick measurements of leaf-water status for chickpea.


Sign in / Sign up

Export Citation Format

Share Document