Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation

2000 ◽  
Vol 27 (7) ◽  
pp. 659
Author(s):  
John de Majnik ◽  
Jeremy J. Weinman ◽  
Michael A. Djordjevic ◽  
Barry G. Rolfe ◽  
Greg J. Tanner ◽  
...  

This study presents the first evidence of heterologous anthocyanin regulatory genes altering anthocyanin expression in stably transformed leguminous plants. Two families of anthocyanin regulatory genes, myc (delila, B-Peru) and myb (myb.Ph2, C1), are involved in the activation of the phenylpropanoid pathway. White clover (Trifolium repens cv. Haifa) plants were transformed with dicotyledonous and monocotyledonous myb or myc genes. Some of these transformed plants exhibited enhanced anthocyanin accumulation in a range of tissues. One plant, transformed with the B-Peru gene driven by the Cauliflower Mosaic Virus 35S promoter, displayed a unique pattern of anthocyanin accumulation in the leaf. The accumulation of anthocyanin in this plant was closely associated with the crescent of leaves, which is normally white. The red pigmentation declined in intensity in the oldest leaf stage. The B-Peru message was detected in all leaf stages of this white clover plant. This anthocyanin pattern was shown to be heritable.

2004 ◽  
Vol 78 (22) ◽  
pp. 12120-12128 ◽  
Author(s):  
Sandra Pauli ◽  
Helen M. Rothnie ◽  
Gang Chen ◽  
Xiaoyuan He ◽  
Thomas Hohn

ABSTRACT A 60-nucleotide region (S1) downstream of the transcription start site of the cauliflower mosaic virus 35S RNA can enhance gene expression. By using transient expression assays with plant protoplasts, this activity was shown to be at least partially due to the effect of transcriptional enhancers within this region. We identify sequence motifs with enhancer function, which are normally masked by the powerful upstream enhancers of the 35S promoter. A repeated CT-rich motif is involved both in enhancer function and in interaction with plant nuclear proteins. The S1 region can also enhance expression from heterologous promoters.


2002 ◽  
Vol 29 (11) ◽  
pp. 1287 ◽  
Author(s):  
Colin L. D. Jenkins ◽  
Annette J. Snow ◽  
Richard J. Simpson ◽  
Thomas J. Higgins ◽  
Nicholas A. Jacques ◽  
...  

White clover (Trifolium repens L.) is an important pasture legume that does not normally accumulate fructan as a storage carbohydrate. We have generated transgenic white clover plants that accumulate fructan, by expressing the fructosyltransferase (Ftf) enzyme from the bacterium Streptococcus salivarius under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Fructan accumulated in leaves, petioles, stolons, flowers, and roots of transgenic plants. Levels of fructan up to approximately 2% dry weight were measured in leaves. The fructan was of high molecular mass ( > 5000 kDa), typical of bacterial fructans. Ftf enzyme activity up to 120 nmol min–1 g–1 fresh weight was determined in leaf extracts of the transformed plants, and appeared to be stable throughout leaf development. Most transformed lines appeared normal, flowered and produced seed, but the growth rate of some transformed lines decreased. Photosynthetic carbon assimilation and levels of endogenous carbohydrates (hexoses, sucrose and starch) were not substantially changed in a clonal line with relatively low fructan. However, in a clonal line with relatively high fructan accumulation, plant growth was reduced, leaf photosynthesis was decreased by 60%, and carbohydrate contents were reduced. The results are discussed in the context of manipulating soluble carbohydrate composition in pasture species to improve nutritive quality for grazing animals.


2019 ◽  
Vol 43 (14) ◽  
pp. 5308-5314 ◽  
Author(s):  
Jinzhi Lv ◽  
Yanming Miao ◽  
Guiqin Yan

The complementary sequence of genetically-modified marker sequence cauliflower mosaic virus 35S promoter (Ca MV 35S) DNA was trimmed and designed into sequences S1 and S2, which were separately modified onto the surfaces of room-temperature phosphorescent (RTP) quantum dots (QDs), forming QDs-S1 (P1) and QDs-S2 (P2), respectively.


2008 ◽  
Vol 133 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Hongmei Ma ◽  
Margaret Pooler ◽  
Robert Griesbach

Many studies have examined anthocyanin gene expression in colorless tissues by introducing anthocyanin regulatory genes of the MYC/R and MYB/C1 families. Expression of the two regulatory genes under the control of a strong promoter generally results in high anthocyanin accumulation. However, such approaches usually have a negative effect on growth and development of the recovered plants. In this study the author used two promoters of different strengths—a weak (Solanum tuberosum L. polyubiquitin Ubi3) and a strong (double 35S) promoter—and generated two sets of expression constructs with the Zea mays L. anthocyanin regulatory genes MycLc and MybC1 . A transient expression system was developed using biolistic bombardment of white Phalaenopsis amabilis (L.) Blume flowers, which the authors confirmed to be anthocyanin regulatory gene mutants. Transient expression of different combinations of the four constructs would generate three different MycLc -to-MybC1 ratios (>1, 1, <1). The enhanced green florescent protein gene (EGFP) was cotransformed as an internal control with the two anthocyanin regulatory gene constructs. These results demonstrate that the ratio of the two transcription factors had a significant influence on the amount of anthocyanin produced. Anthocyanin accumulation occurred only when MybC1 was under the control of the 35S promoter, regardless of whether MycLC was driven by the 35S or Ubi3 promoter.


Sign in / Sign up

Export Citation Format

Share Document