Leaf Expansion Limits Dry Matter Accumulation of Salt-Stressed Maize

1994 ◽  
Vol 21 (5) ◽  
pp. 663 ◽  
Author(s):  
GR Cramer ◽  
GJ Alberico ◽  
C Schmidt

Two maize (Zea mays L.) hybrids, differing in their salt tolerance (percentage of control on a dry weight basis) and ability to accumulate Na+ in the shoot, were treated with 80 mol m-3 NaCl salinity or 80 mol m-3 NaCl plus 8.75 mol m-3 CaCl2. Multiple harvests were performed and the interactions of salinity with time were examined with growth analysis. Relative growth rate (RGR) and leaf area ratio (LAR) were significantly reduced by NaCl salinity, but net assimilation rate (NAR) was unaffected. Supplemental Ca2+ improved RGR by maintaining LAR closer to control values. LAR was inhibited in the early stages of salt stress, but was not limiting growth relative to controls in later stages. Salinity also reduced the specific leaf area and leaf weight ratio, which indicates that leaf expansion and carbon allocation were altered. Differences in salt tolerance between the hybrids were small, but significant throughout the lifecycle of the plants. These differences were associated with differences in leaf elongation rates and LAR within the first 9 days of salinity.

1988 ◽  
Vol 18 (1) ◽  
pp. 131-134
Author(s):  
Daniel K. Struve ◽  
W. Timothy Rhodus

The basal 1 cm of taproot of dormant bareroot 1-0 red oak (Quercusrubra L.) seedlings were given a 3-s dip in 20, 40, or 80 mM concentrations of indole-3-butyric acid (IBA), phenyl indole-3-thiolobutyrate (P-ITB), or equal parts IBA and P-ITB at 20 or 40 mM concentrations. Sixty control seedlings were dipped in 95% ethanol, while 30 seedlings were used for each auxin treatment. Seedlings were potted on May 12, 1986, and grown outdoors. At the end of the 104-day study period, all concentrations of IBA and P-ITB significantly increased number of roots regenerated (from 5.3 with 20 mM IBA to 11.9 for 80 mM IBA) compared with control seedlings. However, P-ITB-treated seedlings produced significantly more leaves (20–24) and leaf area (320–472 cm2), and up to 10 g more dry weight than IBA and non-auxin-treated seedlings. P-ITB treated seedlings had higher relative growth and net assimilation rates and lower leaf area ratio than IBA-treated or control seedlings. Seedlings treated with 20 mM of equal parts IBA and P-ITB were similar to P-ITB-treated seedlings while seedlings treated with the 40 mM IBA and P-ITB combination were similar to IBA-treated seedlings.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1859
Author(s):  
Saeid Hassanpour-bourkheili ◽  
Mahtab Heravi ◽  
Javid Gherekhloo ◽  
Ricardo Alcántara-de la Cruz ◽  
Rafael De Prado

Wild poinsettia (Euphorbia heterophylla L.) is a difficult-to-control weed in soybean production in Brazil that has developed resistance to herbicides, including acetolactate synthase inhibitors. We investigated the potential fitness cost associated to the Ser-653-Asn mutation that confers imazamox resistance in this weed. Plant height, leaf and stem dry weight, leaf area and seed production per plant as well as the growth indices of specific leaf area, leaf area ratio, relative growth rate and net assimilation in F2 homozygous resistant (R) and susceptible (S) wild poinsettia progenies were pairwise compared. S plants were superior in most of the traits studied. Plant heights for S and R biotypes, recorded at 95 days after planting (DAP), were 137 and 120 cm, respectively. Leaf areas were 742 and 1048 cm2 in the R and S biotypes, respectively. The dry weights of leaves and stems in the S plants were 30 and 35%, respectively, higher than in the R plants. In both biotypes, the leaves had a greater share in dry weight at early development stages, but from 50 DAP, the stem became the main contributor to the dry weight of the shoots. The R biotype produced 110 ± 4 seed plant−1, i.e., 12 ± 3% less seeds per plant than that of the S one (125 ± 7 seed plant−1). The growth indices leaf area ratio and specific leaf area were generally higher in the S biotype or similar between both biotypes; while the relative growth rate and net assimilation rate were punctually superior in the R biotype. These results demonstrate that the Ser-653-Asn mutation imposed a fitness cost in imazamox R wild poinsettia.


Weed Science ◽  
1983 ◽  
Vol 31 (4) ◽  
pp. 438-444 ◽  
Author(s):  
William H. Ahrens ◽  
E. W. Stoller

Triazine-susceptible (S) and -resistant (R) biotypes of smooth pigweed (Amaranthus hybridusL.) were grown in the field under competitive conditions at varying initial proportions of S and R plants. R plants were less competitive than S plants as measured by accumulation of total above-ground dry weight and seed dry weight. S and R plants were also grown in the field under non-competitive conditions at 100, 40, and 10% light. Growth rate at 10% light did not differ between S and R plants. At the two higher light intensities, dry-matter accumulation 11 weeks after seeding was about 40% less in the R plants. At 100% light, relative growth rate and net assimilation rate were lower in the R plants by about 3.5 and 19%, respectively. The light- and CO2-saturated rates of CO2fixation in intact leaves of glasshouse-grown R plants were 20% less than those in S plants. An apparent 10 and 20% greater number of chlorophyll molecules per photosystem II reaction center in R plants (as compared with S plants) grown in the field at 40 and 100% light, respectively, did not explain differences between the S and R biotypes in photo synthetic capacity. The S and R plants did not differ in specific leaf weight or chlorophyll content on a leaf-area basis. Lower growth rate of R plants may be responsible for inferior competitive ability of R biotypes and could be the result of an impaired photosynthetic capacity.


HortScience ◽  
2016 ◽  
Vol 51 (7) ◽  
pp. 843-846 ◽  
Author(s):  
Toshio Shibuya ◽  
Ryosuke Endo ◽  
Yoshiaki Kitaya ◽  
Saki Hayashi

Light with a higher red to far-red ratio (R:FR) than sunlight reduces plant growth, but the cause has not been firmly established. In the present study, cucumber seedlings were grown under normal light (similar to sunlight; R:FR = 1.4) from metal-halide lamps or high-R:FR light (R:FR = 4.3) created by transmitting their light through FR-absorbing film, and then their growth parameters and photosynthesis were compared. The relative growth rate (RGR) at high R:FR was 92% of that under normal R:FR, although the net assimilation rate (NAR) did not differ between the treatments, indicating that changes in net photosynthesis per unit leaf area did not cause the growth inhibition at high R:FR. The CO2 exchange per unit leaf area did not differ between the treatments, which supports this hypothesis. The leaf area ratio (LAR) of total plant dry weight of high R:FR seedlings to that of normal R:FR seedlings was also 92%. This suggests that growth suppression in the high R:FR seedlings was caused mainly by decreased LAR. The specific leaf area (SLA) and leaf weight ratio (LWR), components of LAR, under high-R:FR light were 89% and 105%, respectively, of those under normal light, indicating that the smaller LAR at high R:FR mainly results from suppressed leaf enlargement per unit leaf dry matter.


1991 ◽  
Vol 39 (3) ◽  
pp. 191-196 ◽  
Author(s):  
M. Nieuwhof ◽  
F. Garretsen ◽  
J.C. van Oeveren

Growth analyses were carried out on young plants of 15 genotypes, grown initially at 19/14 degrees C day/night temperatures for an 8 h day at low light intensity and subsequently at the night temperatures of 6, 10 and 14 degrees C. Significant genotypic differences occurred for relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf weight ratio (LWR). RGR, LAR and SLA increased and LWR decreased at higher night temperatures. A strong negative correlation was observed between NAR and LAR and NAR and SLA whilst a positive correlation was noted between LAR and SLA. Plant weight was strongly influenced by seed size. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1984 ◽  
Vol 14 (6) ◽  
pp. 850-854 ◽  
Author(s):  
S. B. Rood ◽  
G. Daicos ◽  
T. J. Blake

Weekly applications of 0.4 mg gibberellic acid (GA) in 8 μL 95% ethanol micropipetted onto shoots of rooted cuttings increased Populuseuramericana (Dode) Guinier height growth by 54% and shoot dry weight by 25% after 21 days. Total leaf area increased by 21% as a result of more rapid leaf production and slightly larger leaf sizes. Root growth was unaffected by GA treatment. The observed GA-induced acceleration resulted from an increase in relative growth rate while mean net assimilation rate was unaffected. Owing to a substantial increase in the number and size of leaves, the leaf area ratio, representing the ratio of photosynthesizing to respiring material, increased. While direct micropipette application of GA promoted height growth and primary shoot dry weight accumulation, GA application through either foliar spray or soil drench also promoted the growth of secondary shoots. Application of GA to shoots was more effective in promoting shoot growth than application through the roots. Direct GA application also promoted the growth of P. alba L. × P. grandidentata Michx. and P. × canescens (Ait.) Smith × P. alba × P. grandidentata. Thus, GA can be used for hastening early growth of these trees under winter greenhouse conditions.


2009 ◽  
Vol 66 (6) ◽  
pp. 733-741 ◽  
Author(s):  
Alessandra Aparecida Giacomini ◽  
Sila Carneiro da Silva ◽  
Daniel Oliveira de Lucena Sarmento ◽  
Cauê Varesqui Zeferino ◽  
Salim Jacaúna Souza Júnior ◽  
...  

Grazing strategies alter sward leaf area patterns of growth, affecting herbage accumulation and utilisation. The objective of this experiment was to evaluate the growth of marandu palisadegrass (Brachiaria brizantha cv. Marandu) swards subjected to strategies of intermittent stocking. The experiment was carried out in Piracicaba, São Paulo, Brazil, from October/2004 to September/2005. Swards were grazed at 95 and 100% canopy light interception (LI) to post-grazing heights of 10 and 15 cm, following a 2 × 2 factorial arrangement with four replications in a randomised complete block design. The response variables evaluated were: crop growth rate, relative growth rate, net assimilation rate, leaf area ratio and leaf weight ratio. In early and late spring, the highest crop growth rate was recorded for treatment 95/15 (11.2 and 10.1 g m-2 day-1, respectively), along with high values of net assimilation rate (4.4 and 6.9 g m-2 day-1, respectively), leaf area ratio (0.0095 and 0.0103 m-2 g-1, respectively) and leaf weight ratio (0.56 and 0.56 g g-1, respectively). To compensate reductions in net assimilation rate plants made some morphological and physiological adjustments increasing leaf area and leaf weight ratio. Relative growth rate and net assimilation rate were 26 and 50% higher, respectively, on swards grazed at 95% than at 100% LI. In early spring treatments 100/10 and 95/15 resulted in the highest relative growth rate (0.086 and 0.059 g m-2 day-1, respectively). Treatment 95/15 resulted in the most favourable pattern of growth (crop growth rate, relative growth rate, net assimilation rate), particularly during the transition period between winter and spring.


1967 ◽  
Vol 45 (1) ◽  
pp. 117-131 ◽  
Author(s):  
D. J. C. Friend ◽  
V. A. Helson ◽  
J. E. Fisher

Leaf area per plant, total number of leaves and tillers, and total plant dry weight increased with increasing daylength over the range 8 to 24 h. The increase in the net assimilation rate and relative growth rate with increasing daily total radiation was similar to that obtained by raising the intensity of light given to plants grown under continuous illumination.During the vegetative phase of growth, the leaf area ratio decreased with increasing daylength, mostly because of an increased leaf thickness, again dependent on the level of total daily radiation. During the later stages of growth, earlier floral initiation at long daylengths caused an early decline in the leaf area ratio because of the rapid growth of the stem associated with inflorescence formation. This was a photoperiodic effect independent of the level of total daily radiation, as shown by supplementing an 8-h daylength with 8 h of low-intensity illumination.


1981 ◽  
Vol 97 (2) ◽  
pp. 335-339 ◽  
Author(s):  
N. Sionit ◽  
B. R. Strain ◽  
H. Hellmers

SummaryGrowth and yield components of a semi-dwarf spring wheat (Triticum aestivumL., cv. GWO 1809) were determined under three different atmospheric CO2a concentrations (350, 675 and 1000 μ1/1) in controlled environment chambers of the Duke University Phytotron. CO2 enrichment enhanced tiller and head emergence and increased the number of head-producing tillers and the total dry weight of the plants. Total leaf area, stem height and root/shoot ratio of the plants were greater at high CO2concentrations than at low. Net assimilation rate (NAR) increased with increasing CO2concentration and decreased with plant size. There was little effect of CO2enrichment on leaf weight ratio (LWR) and leaf area ratio (LAR) and no significant effect on specific leaf area (SLA). The weight and number of seeds were significantly higher with increasing CO2concentration. The results of this study provide evidence that important changes in plant growth and development may occur during the next century if global CO2enrichment continues. Some of these changes would have important ecological impact in natural and managed ecosystems in the future.


HortScience ◽  
1991 ◽  
Vol 26 (9) ◽  
pp. 1204-1207 ◽  
Author(s):  
Thomas G. Ranney ◽  
Nina L. Bassuk ◽  
Thomas H. Whitlow

Growth and physiological characteristics were evaluated in autografted and reciprocally grafted plants of Prunus avium L. ×pseudocerasus Lindl. `Colt' and Prunus cerasus L. `Meteor'. Containerized plants were grown for 150 days in a greenhouse under either well-watered or water-stressed conditions. Both the scion and rootstock influenced growth (relative growth rate, R̄), morphological [leaf area : root surface area (LARSA) and specific leaf area (SLA)], and physiological (mean net assimilation rate, Ē) characteristics of grafted plants. Regardless of the watering regime, plants with `Meteor' scions and `Colt' rootstocks maintained higher R̄ than plants with `Colt' scions and `Meteor' rootstocks. This enhanced growth occurred as a result of higher Ē. Measurements on water-stressed plants also showed that the graft combination of `Meteor' on `Colt' had the lowest LARSA, while the reciprocal combination of `Colt' on `Meteor' had the highest. Differences in LARSA among water-stressed plants primarily reflected changes in SLA, as influenced by both rootstock and scion, and not in partitioning of dry weight between these organs.


Sign in / Sign up

Export Citation Format

Share Document